diff --git a/tests/ut/python/train/summary/test_summary_performance.py b/tests/ut/python/train/summary/test_summary_performance.py deleted file mode 100644 index 9ee9725d134..00000000000 --- a/tests/ut/python/train/summary/test_summary_performance.py +++ /dev/null @@ -1,97 +0,0 @@ -# Copyright 2020 Huawei Technologies Co., Ltd -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================ -""" -@File : test_summary.py -@Author: -@Date : 2019-07-4 -@Desc : test summary function -""" -import os -import logging -import time -import numpy as np -from mindspore.train.summary.summary_record import SummaryRecord, _cache_summary_tensor_data -from mindspore.common.tensor import Tensor - -CUR_DIR = os.getcwd() -SUMMARY_DIR = CUR_DIR + "/test_temp_summary_event_file/" - -log = logging.getLogger("test") -log.setLevel(level=logging.ERROR) - -def get_now_time_ns(): - """get the time of second""" - time_second = int(time.time_ns()) - return time_second - -def get_test_data(step): - """ get_test_data """ - # pylint: disable=unused-argument - test_data_list = [] - tag1 = "xt1[:Tensor]" - tag2 = "xt2[:Tensor]" - tag3 = "xt3[:Tensor]" - np1 = np.random.random((5, 4, 3, 5)) - np2 = np.random.random((5, 5, 3, 5)) - np3 = np.random.random((4, 5, 3, 5)) - - dict1 = {} - dict1["name"] = tag1 - dict1["data"] = Tensor(np1) - - dict2 = {} - dict2["name"] = tag2 - dict2["data"] = Tensor(np2) - - dict3 = {} - dict3["name"] = tag3 - dict3["data"] = Tensor(np3) - - test_data_list.append(dict1) - test_data_list.append(dict2) - - return test_data_list - - -# Test 1: summary sample of scalar -def test_summary_performance(): - """ test_summary_performance """ - log.debug("begin test_scalar_summary_sample") - current_time = time.time() - print("time = ", current_time) - # step 0: create the thread - test_writer = SummaryRecord(SUMMARY_DIR, flush_time=120) - - # step 1: create the test data for summary - old_time = get_now_time_ns() - # step 2: create the Event - for i in range(1, 10): - test_data = get_test_data(i) - _cache_summary_tensor_data(test_data) - test_writer.record(i) - now_time = get_now_time_ns() - consume_time = (now_time - old_time)/1000/1000 - old_time = now_time - print("step test_summary_performance conusmer time is:", consume_time) - - - # step 3: send the event to mq - - # step 4: accept the event and write the file - test_writer.flush() - test_writer.close() - current_time = time.time() - current_time - print("consume time = ", current_time) - log.debug("finished test_scalar_summary_sample") diff --git a/tests/ut/python/train/test_amp.py b/tests/ut/python/train/test_amp.py index eebd188e604..1a26c21775f 100644 --- a/tests/ut/python/train/test_amp.py +++ b/tests/ut/python/train/test_amp.py @@ -66,6 +66,7 @@ def test_amp_o2(): train_network = amp.build_train_network(net, optimizer, level="O2") output = train_network(inputs, label) + def test_amp_o2_loss(): inputs = Tensor(np.ones([16, 16]).astype(np.float32)) label = Tensor(np.zeros([16, 16]).astype(np.float32)) @@ -75,14 +76,6 @@ def test_amp_o2_loss(): train_network = amp.build_train_network(net, optimizer, loss, level="O2") output = train_network(inputs, label) -def test_amp_resnet50_loss(): - inputs = Tensor(np.ones([2, 3, 224, 224]).astype(np.float32)) - label = Tensor(np.zeros([2, 10]).astype(np.float32)) - net = resnet50() - loss = nn.SoftmaxCrossEntropyWithLogits(reduction='mean') - optimizer = nn.Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9) - train_network = amp.build_train_network(net, optimizer, loss, level="O2") - train_network(inputs, label) def test_amp_o0_loss(): inputs = Tensor(np.ones([16, 16]).astype(np.float32))