forked from mindspore-Ecosystem/mindspore
add tesecases of Tensor
This commit is contained in:
parent
9e37e77dc2
commit
038cbe43de
|
@ -160,3 +160,19 @@ def test_np_fallback_func_tensor_index():
|
|||
output = np_fallback_func_tensor_index(x)
|
||||
output_expect = Tensor(6, mstype.float32)
|
||||
assert output == output_expect
|
||||
|
||||
|
||||
@pytest.mark.skip(reason='Not support in graph jit fallback feature yet')
|
||||
def test_np_calculate():
|
||||
"""
|
||||
Feature: Fallback feature.
|
||||
Description: Support numpy calculation.
|
||||
Expectation: No exception.
|
||||
"""
|
||||
@ms_function
|
||||
def np_calculate():
|
||||
x = np.array([3, 1, 2, 4, 5])
|
||||
y = x % 2
|
||||
z = Tensor(y)
|
||||
return z
|
||||
assert np.all(np_calculate().asnumpy() == np.array([1, 1, 0, 0, 1]))
|
||||
|
|
|
@ -54,21 +54,6 @@ def test_use_monad():
|
|||
print(use_monad(x, y))
|
||||
|
||||
|
||||
@ms_function
|
||||
def use_tensor_with_mstype():
|
||||
me_x = Tensor(1, mstype.int32)
|
||||
return me_x
|
||||
|
||||
|
||||
def test_tensor_with_mstype():
|
||||
"""
|
||||
Feature: JIT Fallback
|
||||
Description: Test tensor with mstype in graph mode.
|
||||
Expectation: No exception.
|
||||
"""
|
||||
print(use_tensor_with_mstype())
|
||||
|
||||
|
||||
@ms_function
|
||||
def use_tuple_of_tensor():
|
||||
me_x = (Tensor(1), Tensor(1))
|
||||
|
@ -244,11 +229,7 @@ def test_np_tensor_add():
|
|||
print("tensor_list:", tensor_list)
|
||||
assert tensor_list[-1] == 11
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
|
||||
def test_binop_new_tensor():
|
||||
"""
|
||||
Feature: Fallback feature
|
||||
|
@ -268,11 +249,6 @@ def test_binop_new_tensor():
|
|||
print(net())
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_fallback_tensor_compare():
|
||||
"""
|
||||
Feature: Fallback feature
|
||||
|
@ -293,11 +269,6 @@ def test_fallback_tensor_compare():
|
|||
print(compare_net())
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_fallback_tensor_not():
|
||||
"""
|
||||
Feature: Fallback feature
|
||||
|
|
|
@ -0,0 +1,215 @@
|
|||
import pytest
|
||||
import numpy as np
|
||||
from mindspore import Tensor, ms_function, context
|
||||
import mindspore.common.dtype as mstype
|
||||
from mindspore.common.initializer import One
|
||||
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE)
|
||||
|
||||
def test_tensor():
|
||||
"""
|
||||
Feature: JIT Fallback
|
||||
Description: Test Tensor() in graph mode.
|
||||
Expectation: No exception.
|
||||
"""
|
||||
@ms_function
|
||||
def foo():
|
||||
me_x = Tensor(1)
|
||||
return me_x
|
||||
print(foo())
|
||||
|
||||
|
||||
def test_tensor_bool():
|
||||
"""
|
||||
Feature: JIT Fallback
|
||||
Description: Test Tensor(bool) in graph mode.
|
||||
Expectation: No exception.
|
||||
"""
|
||||
@ms_function
|
||||
def foo():
|
||||
me_x = Tensor([True, True, False])
|
||||
return me_x
|
||||
print(foo())
|
||||
|
||||
|
||||
def test_tensor_array():
|
||||
"""
|
||||
Feature: JIT Fallback
|
||||
Description: Test Tensor(array) in graph mode.
|
||||
Expectation: No exception.
|
||||
"""
|
||||
@ms_function
|
||||
def foo():
|
||||
me_x = Tensor([1])
|
||||
return me_x
|
||||
print(foo())
|
||||
|
||||
|
||||
def test_tensor_with_mstype():
|
||||
"""
|
||||
Feature: JIT Fallback
|
||||
Description: Test Tensor() with mstype in graph mode.
|
||||
Expectation: No exception.
|
||||
"""
|
||||
@ms_function
|
||||
def foo():
|
||||
me_x = Tensor(1, mstype.int32)
|
||||
return me_x
|
||||
print(foo())
|
||||
|
||||
|
||||
def test_tensor_array_with_mstype():
|
||||
"""
|
||||
Feature: JIT Fallback
|
||||
Description: Test Tensor(array) with mstype in graph mode.
|
||||
Expectation: No exception.
|
||||
"""
|
||||
@ms_function
|
||||
def foo():
|
||||
me_x = Tensor([1], mstype.int32)
|
||||
return me_x
|
||||
print(foo())
|
||||
|
||||
|
||||
@pytest.mark.skip(reason='Not support in graph jit fallback feature yet')
|
||||
def test_tensor_array_astype():
|
||||
"""
|
||||
Feature: JIT Fallback
|
||||
Description: Test Tensor(array) with astype() in graph mode.
|
||||
Expectation: No exception.
|
||||
"""
|
||||
@ms_function
|
||||
def foo():
|
||||
me_x = Tensor([1.1, -2.1]).astype("float32")
|
||||
return me_x
|
||||
print(foo())
|
||||
|
||||
|
||||
def test_tensor_with_numpy():
|
||||
"""
|
||||
Feature: JIT Fallback
|
||||
Description: Test Tensor() with numpy in graph mode.
|
||||
Expectation: No exception.
|
||||
"""
|
||||
@ms_function
|
||||
def foo():
|
||||
me_x = Tensor(np.zeros([1, 2, 3]), mstype.float32)
|
||||
return me_x
|
||||
print(foo())
|
||||
|
||||
|
||||
def test_tensor_with_init():
|
||||
"""
|
||||
Feature: JIT Fallback
|
||||
Description: Test Tensor() with init in graph mode.
|
||||
Expectation: No exception.
|
||||
"""
|
||||
@ms_function
|
||||
def foo():
|
||||
me_x = Tensor(shape=(1, 3), dtype=mstype.float32, init=One())
|
||||
return me_x
|
||||
print(foo())
|
||||
|
||||
|
||||
def test_tensor_reshape():
|
||||
"""
|
||||
Feature: JIT Fallback
|
||||
Description: Test Tensor() with reshape() in graph mode.
|
||||
Expectation: No exception.
|
||||
"""
|
||||
@ms_function
|
||||
def foo():
|
||||
me_x = Tensor(np.arange(10, 16).reshape(2, 3).astype("float32"))
|
||||
return me_x
|
||||
print(foo())
|
||||
|
||||
|
||||
@pytest.mark.skip(reason='Not support in graph jit fallback feature yet')
|
||||
def test_tensor_abs():
|
||||
"""
|
||||
Feature: JIT Fallback
|
||||
Description: Test Tensor.abs() in graph mode.
|
||||
Expectation: No exception.
|
||||
"""
|
||||
@ms_function
|
||||
def foo():
|
||||
a = Tensor([1.1, -2.1]).astype("float32")
|
||||
out = a.abs()
|
||||
return out
|
||||
print(foo())
|
||||
|
||||
|
||||
@pytest.mark.skip(reason='Not support in graph jit fallback feature yet')
|
||||
def test_tensor_all():
|
||||
"""
|
||||
Feature: JIT Fallback
|
||||
Description: Test Tensor.all() in graph mode.
|
||||
Expectation: No exception.
|
||||
"""
|
||||
@ms_function
|
||||
def foo():
|
||||
a = Tensor([True, True, False])
|
||||
out = a.all()
|
||||
return out
|
||||
print(foo())
|
||||
|
||||
|
||||
@pytest.mark.skip(reason='Not support in graph jit fallback feature yet')
|
||||
def test_tensor_any():
|
||||
"""
|
||||
Feature: JIT Fallback
|
||||
Description: Test Tensor.any() in graph mode.
|
||||
Expectation: No exception.
|
||||
"""
|
||||
@ms_function
|
||||
def foo():
|
||||
a = Tensor([True, True, False])
|
||||
out = a.any()
|
||||
return out
|
||||
print(foo())
|
||||
|
||||
|
||||
@pytest.mark.skip(reason='Not support in graph jit fallback feature yet')
|
||||
def test_tensor_argmax():
|
||||
"""
|
||||
Feature: JIT Fallback
|
||||
Description: Test Tensor.argmax() in graph mode.
|
||||
Expectation: No exception.
|
||||
"""
|
||||
@ms_function
|
||||
def foo():
|
||||
a = Tensor(np.arange(10, 16).reshape(2, 3).astype("float32"))
|
||||
out = a.argmax()
|
||||
return out
|
||||
print(foo())
|
||||
|
||||
|
||||
@pytest.mark.skip(reason='Not support in graph jit fallback feature yet')
|
||||
def test_tensor_argmin():
|
||||
"""
|
||||
Feature: JIT Fallback
|
||||
Description: Test Tensor.argmin() in graph mode.
|
||||
Expectation: No exception.
|
||||
"""
|
||||
@ms_function
|
||||
def foo():
|
||||
a = Tensor(np.arange(10, 16).reshape(2, 3).astype("float32"))
|
||||
out = a.argmin()
|
||||
return out
|
||||
print(foo())
|
||||
|
||||
|
||||
@pytest.mark.skip(reason='Not support in graph jit fallback feature yet')
|
||||
def test_tensor_astype():
|
||||
"""
|
||||
Feature: JIT Fallback
|
||||
Description: Test Tensor.astype() in graph mode.
|
||||
Expectation: No exception.
|
||||
"""
|
||||
@ms_function
|
||||
def foo():
|
||||
a = Tensor(np.ones((1, 2, 2, 1), dtype=np.float32))
|
||||
out = a.astype("int32")
|
||||
return out
|
||||
print(foo())
|
Loading…
Reference in New Issue