forked from mindspore-Ecosystem/mindspore
!5504 modify README.md
Merge pull request !5504 from wukesong/modify_read
This commit is contained in:
commit
037b8e9a96
|
@ -71,8 +71,7 @@ sh run_standalone_eval_ascend.sh [DATA_PATH] [CKPT_NAME]
|
|||
## [Script and Sample Code](#contents)
|
||||
|
||||
```
|
||||
├── model_zoo
|
||||
├── README.md // descriptions about all the models
|
||||
├── cv
|
||||
├── alexnet
|
||||
├── README.md // descriptions about alexnet
|
||||
├── requirements.txt // package needed
|
||||
|
@ -116,8 +115,8 @@ sh run_standalone_train_ascend.sh cifar-10-batches-bin ckpt
|
|||
|
||||
After training, the loss value will be achieved as follows:
|
||||
|
||||
# grep "loss is " train.log
|
||||
```
|
||||
# grep "loss is " train.log
|
||||
epoch: 1 step: 1, loss is 2.2791853
|
||||
...
|
||||
epoch: 1 step: 1536, loss is 1.9366643
|
||||
|
@ -171,7 +170,7 @@ You can view the results through the file "log.txt". The accuracy of the test da
|
|||
|
||||
# [Description of Random Situation](#contents)
|
||||
|
||||
In dataset.py, we set the seed inside “create_dataset" function.
|
||||
In dataset.py, we set the seed inside ```create_dataset``` function.
|
||||
|
||||
# [ModelZoo Homepage](#contents)
|
||||
Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo).
|
||||
|
|
|
@ -77,8 +77,7 @@ sh run_standalone_eval_ascend.sh [DATA_PATH] [CKPT_NAME]
|
|||
## [Script and Sample Code](#contents)
|
||||
|
||||
```
|
||||
├── model_zoo
|
||||
├── README.md // descriptions about all the models
|
||||
├── cv
|
||||
├── lenet
|
||||
├── README.md // descriptions about lenet
|
||||
├── requirements.txt // package needed
|
||||
|
@ -181,7 +180,7 @@ You can view the results through the file "log.txt". The accuracy of the test da
|
|||
|
||||
# [Description of Random Situation](#contents)
|
||||
|
||||
In dataset.py, we set the seed inside “create_dataset" function.
|
||||
In dataset.py, we set the seed inside ```create_dataset``` function.
|
||||
|
||||
# [ModelZoo Homepage](#contents)
|
||||
Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo).
|
||||
|
|
|
@ -175,7 +175,7 @@ result: {'acc': 0.71976314102564111} ckpt=/path/to/checkpoint/mobilenet-200_625.
|
|||
| Parameters | | | |
|
||||
| -------------------------- | ----------------------------- | ------------------------- | -------------------- |
|
||||
| Model Version | V1 | | |
|
||||
| Resource | Huawei 910 | NV SMX2 V100-32G | Huawei 310 |
|
||||
| Resource | Ascend 910 | NV SMX2 V100-32G | Ascend 310 |
|
||||
| uploaded Date | 05/06/2020 | 05/22/2020 | |
|
||||
| MindSpore Version | 0.2.0 | 0.2.0 | 0.2.0 |
|
||||
| Dataset | ImageNet, 1.2W | ImageNet, 1.2W | ImageNet, 1.2W |
|
||||
|
|
|
@ -47,7 +47,8 @@ Dataset used: [imagenet](http://www.image-net.org/)
|
|||
|
||||
## [Mixed Precision](#contents)
|
||||
|
||||
The [mixed precision](https://www.mindspore.cn/tutorial/zh-CN/master/advanced_use/mixed_precision.html) training method accelerates the deep learning neural network training process by using both the single-precision and half-precision data formats, and maintains the network precision achieved by the single-precision training at the same time. Mixed precision training can accelerate the computation process, reduce memory usage, and enable a larger model or batch size to be trained on specific hardware.
|
||||
The [mixed precision](https://www.mindspore.cn/tutorial/zh-CN/master/advanced_use/mixed_precision.html) training method accelerates the deep learning neural network training process by using both the single-precision and half-precision data formats, and maintains the network precision achieved by the single-precision training at the same time. Mixed precision training can accelerate the computation process, reduce memory usage, and enable a larger model or batch size to be trained on specific hardware.
|
||||
|
||||
For FP16 operators, if the input data type is FP32, the backend of MindSpore will automatically handle it with reduced precision. Users could check the reduced-precision operators by enabling INFO log and then searching ‘reduce precision’.
|
||||
|
||||
# [Environment Requirements](#contents)
|
||||
|
@ -228,7 +229,7 @@ acc=93.88%(TOP5)
|
|||
|
||||
| Parameters | | | |
|
||||
| -------------------------- | ----------------------------- | ------------------------- | -------------------- |
|
||||
| Resource | Huawei 910 | NV SMX2 V100-32G | Huawei 310 |
|
||||
| Resource | Ascend 910 | NV SMX2 V100-32G | Ascend 310 |
|
||||
| uploaded Date | 06/30/2020 | 07/23/2020 | 07/23/2020 |
|
||||
| MindSpore Version | 0.5.0 | 0.6.0 | 0.6.0 |
|
||||
| Dataset | ImageNet, 1.2W | ImageNet, 1.2W | ImageNet, 1.2W |
|
||||
|
|
Loading…
Reference in New Issue