forked from mindspore-Ecosystem/mindspore
add CTCGreedyDecoder ops
This commit is contained in:
parent
e74355f3e1
commit
0162587ebc
|
@ -59,3 +59,4 @@ from .fused_sparse_ftrl import _fused_sparse_ftrl_aicpu
|
|||
from .fused_sparse_proximal_adagrad import _fused_sparse_proximal_adagrad_aicpu
|
||||
from .meshgrid import _meshgrid_aicpu
|
||||
from .trans_data import _trans_data_aicpu
|
||||
from .ctc_greedy_decoder import _ctc_greedy_decoder_aicpu
|
||||
|
|
|
@ -0,0 +1,39 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""CTCGreedyDecoder op"""
|
||||
from mindspore.ops.op_info_register import op_info_register, AiCPURegOp, DataType
|
||||
ctc_greedy_decoder_op_info = AiCPURegOp("CTCGreedyDecoder") \
|
||||
.fusion_type("OPAQUE") \
|
||||
.input(0, "inputs", "required") \
|
||||
.input(1, "sequence_length", "required") \
|
||||
.output(0, "decoded_indices", "required") \
|
||||
.output(1, "decoded_values", "required") \
|
||||
.output(2, "decoded_shape", "required") \
|
||||
.output(3, "log_probability", "required") \
|
||||
.dtype_format(DataType.F32_Default, DataType.I32_Default, DataType.I64_Default, DataType.I64_Default,
|
||||
DataType.I64_Default, DataType.F32_Default) \
|
||||
.dtype_format(DataType.F64_Default, DataType.I32_Default, DataType.I64_Default, DataType.I64_Default,
|
||||
DataType.I64_Default, DataType.F64_Default) \
|
||||
.dtype_format(DataType.F32_NCHW, DataType.I32_NCHW, DataType.I64_NCHW, DataType.I64_NCHW,
|
||||
DataType.I64_NCHW, DataType.F32_NCHW) \
|
||||
.dtype_format(DataType.F64_NCHW, DataType.I32_NCHW, DataType.I64_NCHW, DataType.I64_NCHW,
|
||||
DataType.I64_NCHW, DataType.F64_NCHW) \
|
||||
.get_op_info()
|
||||
|
||||
@op_info_register(ctc_greedy_decoder_op_info)
|
||||
def _ctc_greedy_decoder_aicpu():
|
||||
"""CTCGreedyDecoder AiCPU register"""
|
||||
return
|
|
@ -0,0 +1,59 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.ctc = P.CTCGreedyDecoder()
|
||||
|
||||
def construct(self, inputs, sequence_length):
|
||||
return self.ctc(inputs, sequence_length)
|
||||
|
||||
|
||||
def test_net_float32():
|
||||
x = np.random.randn(2, 2, 3).astype(np.float32)
|
||||
sequence_length = np.array([2, 2]).astype(np.int32)
|
||||
net = Net()
|
||||
output = net(Tensor(x), Tensor(sequence_length))
|
||||
print(output)
|
||||
|
||||
|
||||
def test_net_assert():
|
||||
x = np.array([[[0.44662005, 0.41900548, -0.8334965],
|
||||
[-0.28560895, -0.03626213, -0.04149306]],
|
||||
[[-0.70390207, 0.2977548, -0.4097819],
|
||||
[-0.6942656, -0.14625494, -0.90554816]]]).astype(np.float32)
|
||||
sequence_length = np.array([2, 2]).astype(np.int32)
|
||||
net = Net()
|
||||
output = net(Tensor(x), Tensor(sequence_length))
|
||||
print(output)
|
||||
|
||||
out_expect0 = np.array([0, 0, 0, 1, 1, 0]).reshape(3, 2)
|
||||
out_expect1 = np.array([0, 1, 1])
|
||||
out_expect2 = np.array([2, 2])
|
||||
out_expect3 = np.array([-0.7443749, 0.18251707]).reshape(2, 1)
|
||||
assert np.array_equal(output[0].asnumpy(), out_expect0)
|
||||
assert np.array_equal(output[1].asnumpy(), out_expect1)
|
||||
assert np.array_equal(output[2].asnumpy(), out_expect2)
|
||||
assert np.array_equal(output[3].asnumpy(), out_expect3)
|
Loading…
Reference in New Issue