!7991 fix ReLUV2 error

Merge pull request !7991 from yihuaijie/dev
This commit is contained in:
mindspore-ci-bot 2020-10-30 14:16:33 +08:00 committed by Gitee
commit 015b244471
5 changed files with 320 additions and 8 deletions

View File

@ -154,14 +154,6 @@ class ReLU6Info : public ActivationOther {
~ReLU6Info() override = default;
};
class ReLUV2Info : public ActivationOther {
public:
ReLUV2Info(const std::string &name, const Shapes &inputs_shape, const Shapes &outputs_shape,
const PrimitiveAttrs &attrs)
: ActivationOther(name, inputs_shape, outputs_shape, attrs) {}
~ReLUV2Info() override = default;
};
class SoftsignInfo : public ActivationOther {
public:
SoftsignInfo(const std::string &name, const Shapes &inputs_shape, const Shapes &outputs_shape,

View File

@ -45,5 +45,6 @@
#include "frontend/parallel/ops_info/pack_info.h"
#include "frontend/parallel/ops_info/broadcast_to_info.h"
#include "frontend/parallel/ops_info/unique_info.h"
#include "frontend/parallel/ops_info/reluv2_info.h"
#endif // MINDSPORE_CCSRC_FRONTEND_PARALLEL_OPS_INFO_HEAD_FILES_H_

View File

@ -0,0 +1,183 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "frontend/parallel/ops_info/reluv2_info.h"
#include <algorithm>
#include <memory>
#include <vector>
#include <utility>
#include <functional>
#include <numeric>
#include "frontend/parallel/device_matrix.h"
#include "ir/value.h"
#include "frontend/parallel/auto_parallel/costmodel.h"
#include "frontend/parallel/context.h"
#include "frontend/parallel/strategy.h"
namespace mindspore {
namespace parallel {
Status ReLUV2Info::SetCostUnderStrategy(const StrategyPtr &strategy) { return SetCostUnderStrategyBase(strategy); }
Status ReLUV2Info::CheckStrategy(const StrategyPtr &strategy) { return CheckStrategyValue(strategy, inputs_shape_); }
Status ReLUV2Info::GetAttrs() { return SUCCESS; }
Status ReLUV2Info::GenerateStrategies(int32_t stage_id) {
Shape input0_split(inputs_shape_[0].size(), 1);
Shapes splittable_inputs = {input0_split};
std::vector<StrategyPtr> sp_vector;
if (GenerateStrategiesForIndependentInputs(stage_id, inputs_shape_, splittable_inputs, &sp_vector) != SUCCESS) {
MS_LOG(ERROR) << name_ << " : Generate strategies for independent inputs() failed.";
return FAILED;
}
size_t success = 0;
for (auto &sp : sp_vector) {
if (SetCostUnderStrategy(sp) == SUCCESS) {
success++;
MS_LOG(INFO) << name_ << " : Successfully generated " << success << " strategy";
PrintStrategy(sp);
}
}
return SUCCESS;
}
Status ReLUV2Info::InferDevMatrixShape() {
Strategys stra = strategy_->GetInputDim();
Dimensions input_strategy = stra.at(0);
dev_matrix_shape_ = input_strategy;
return SUCCESS;
}
Status ReLUV2Info::InferMirrorOps() {
mirror_ops_.clear();
Shape tensor_map = inputs_tensor_map_[0];
std::vector<Group> group;
if (CreateGroupByTensorMap(tensor_map, &group) != SUCCESS) {
MS_LOG(ERROR) << name_ << " : Create group failed.";
return FAILED;
}
OperatorVector mirror_op;
if (group.empty()) {
MS_LOG(INFO) << name_ << " : The mirror ops is empty.";
return SUCCESS;
} else {
mirror_op = CreateMirrorOps(group[0].name(), group[0].GetDevNum());
mirror_ops_.push_back(mirror_op);
std::string group_name = group[0].name();
MS_LOG(INFO) << name_ << " : Create the mirror ops success, the group name is " << group_name;
}
return SUCCESS;
}
Status ReLUV2Info::InferForwardCommunication() {
// do nothing
return SUCCESS;
}
Status ReLUV2Info::InferTensorMap() {
Shape tensor_map_index;
size_t size = inputs_shape_.at(0).size();
// such as 4: tensor_map_index [3,2,1,0]
for (size_t i = 0; i < size; ++i) {
tensor_map_index.push_back((int64_t)(size - i - 1));
}
inputs_tensor_map_.push_back(tensor_map_index);
// output and mask
outputs_tensor_map_.push_back(tensor_map_index);
outputs_tensor_map_.push_back(tensor_map_index);
return SUCCESS;
}
Status ReLUV2Info::InferTensorInfo() {
if (inputs_shape_.empty() || outputs_shape_.empty() || inputs_tensor_map_.empty() || outputs_tensor_map_.empty()) {
MS_LOG(ERROR) << name_ << ": Invalid args";
return FAILED;
}
TensorLayout input_layout, output_layout;
// infer tensor layout
if (input_layout.InitFromVector(dev_matrix_shape_, inputs_tensor_map_[0], inputs_shape_[0]) != SUCCESS) {
MS_LOG(ERROR) << name_ << ": Infer input tensor layout failed.";
return FAILED;
}
TensorInfo input_tensor_info(input_layout);
inputs_tensor_info_.push_back(input_tensor_info);
if (output_layout.InitFromVector(dev_matrix_shape_, outputs_tensor_map_[0], outputs_shape_[0]) != SUCCESS) {
MS_LOG(ERROR) << name_ << ": Infer output tensor layout failed.";
return FAILED;
}
TensorInfo output_tensor_info(output_layout);
// output and mask
outputs_tensor_info_.push_back(output_tensor_info);
outputs_tensor_info_.push_back(output_tensor_info);
return SUCCESS;
}
Status ReLUV2Info::InferAsLossDivisor() {
if (!ParallelContext::GetInstance()->loss_repeated_mean()) {
as_loss_divisor_ = 1;
return SUCCESS;
}
if (outputs_tensor_map_.empty()) {
MS_LOG(ERROR) << name_ << ": The outputs tensor map is empty.";
return FAILED;
}
if (outputs_tensor_map_[0].empty()) {
as_loss_divisor_ = SizeToInt(global_device_list_.size());
MS_LOG(INFO) << name_ << ": The output is a scalar, use the dev size " << as_loss_divisor_ << ", loss divisor.";
return SUCCESS;
}
as_loss_divisor_ = ComputeRepeatDeviceNumByTensorMap(dev_matrix_shape_, outputs_tensor_map_[0]);
MS_LOG(INFO) << name_ << ": the dev matrix shape is " << ShapeToString(dev_matrix_shape_)
<< ", the output tensor map is " << ShapeToString(outputs_tensor_map_[0]) << ", loss divisor is "
<< as_loss_divisor_;
return SUCCESS;
}
Status ReLUV2Info::Init(const StrategyPtr &strategy) {
if (InitWithAutoRepeatCalc(strategy) != SUCCESS) {
MS_LOG(ERROR) << name_ << " : Init failed.";
return FAILED;
}
MS_LOG(INFO) << name_ << " : Init success.";
return SUCCESS;
}
Status ReLUV2Info::InitForCostModel(const StrategyPtr &strategy) {
if (InitForCostModelWithAutoRepeatCalc(strategy) != SUCCESS) {
MS_LOG(ERROR) << name_ << " : Init for cost model failed.";
return FAILED;
}
MS_LOG(INFO) << name_ << " : Init for cost model success.";
return SUCCESS;
}
} // namespace parallel
} // namespace mindspore

View File

@ -0,0 +1,60 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_FRONTEND_PARALLEL_OPS_INFO_RELUV2_INFO_H_
#define MINDSPORE_CCSRC_FRONTEND_PARALLEL_OPS_INFO_RELUV2_INFO_H_
#include <ir/value.h>
#include <memory>
#include <string>
#include <unordered_map>
#include <vector>
#include "frontend/parallel/auto_parallel/operator_costmodel.h"
#include "frontend/parallel/ops_info/operator_info.h"
#include "frontend/parallel/strategy.h"
namespace mindspore {
namespace parallel {
/*
* The input, output and mask have the same tensormap.
* And all dimensions of input are splitable.
*/
class ReLUV2Info : public OperatorInfo {
public:
ReLUV2Info(const std::string &operator_name, const Shapes &inputs_shape, const Shapes &outputs_shape,
const PrimitiveAttrs &attrs)
: OperatorInfo(operator_name, inputs_shape, outputs_shape, attrs, std::make_shared<ActivationCost>(false)) {}
~ReLUV2Info() override = default;
Status Init(const StrategyPtr &strategy) override;
Status InitForCostModel(const StrategyPtr &strategy) override;
Status GenerateStrategies(int32_t stage_id) override;
Status SetCostUnderStrategy(const StrategyPtr &strategy) override;
protected:
Status InferMirrorOps() override;
Status InferForwardCommunication() override;
Status InferTensorMap() override;
Status InferTensorInfo() override;
Status InferDevMatrixShape() override;
Status CheckStrategy(const StrategyPtr &strategy) override;
Status GetAttrs() override;
Status InferAsLossDivisor() override;
};
} // namespace parallel
} // namespace mindspore
#endif // MINDSPORE_CCSRC_FRONTEND_PARALLEL_OPS_INFO_RELUV2_INFO_H_

View File

@ -0,0 +1,76 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import mindspore as ms
import mindspore.context as context
from mindspore import Tensor, Parameter
import mindspore.nn as nn
from mindspore.common.api import _executor
from mindspore.nn import TrainOneStepCell, Momentum
from mindspore.ops import operations as P
class Net(nn.Cell):
def __init__(self, mul_weight, strategy=None):
super(Net, self).__init__()
self.reluv2 = P.ReLUV2().shard(strategy)
self.mul = P.Mul()
self.weight = Parameter(mul_weight, "w1")
def construct(self, x):
out = self.mul(x, self.weight)
output, _ = self.reluv2(out)
return output
_w1 = Tensor(np.ones([32, 16, 48, 64]), dtype=ms.float32)
_x = Tensor(np.ones([32, 16, 48, 64]), dtype=ms.float32)
def compile_net(net):
context.set_context(mode=context.GRAPH_MODE, save_graphs=True)
optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
train_net = TrainOneStepCell(net, optimizer)
train_net.set_auto_parallel()
train_net.set_train()
_executor.compile(train_net, _x)
context.reset_auto_parallel_context()
def test_reluv2():
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
strategy = ((2, 1, 2, 2),)
net = Net(_w1, strategy)
compile_net(net)
def test_reluv2_no_full():
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
strategy = ((2, 1, 2, 1),)
net = Net(_w1, strategy)
compile_net(net)
def test_reluv2_no_strategy():
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
strategy = None
net = Net(_w1, strategy)
compile_net(net)
def test_reluv2_auto_parallel():
context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=8, global_rank=0)
net = Net(_w1)
compile_net(net)