forked from mindspore-Ecosystem/mindspore
commit
015b244471
|
@ -154,14 +154,6 @@ class ReLU6Info : public ActivationOther {
|
|||
~ReLU6Info() override = default;
|
||||
};
|
||||
|
||||
class ReLUV2Info : public ActivationOther {
|
||||
public:
|
||||
ReLUV2Info(const std::string &name, const Shapes &inputs_shape, const Shapes &outputs_shape,
|
||||
const PrimitiveAttrs &attrs)
|
||||
: ActivationOther(name, inputs_shape, outputs_shape, attrs) {}
|
||||
~ReLUV2Info() override = default;
|
||||
};
|
||||
|
||||
class SoftsignInfo : public ActivationOther {
|
||||
public:
|
||||
SoftsignInfo(const std::string &name, const Shapes &inputs_shape, const Shapes &outputs_shape,
|
||||
|
|
|
@ -45,5 +45,6 @@
|
|||
#include "frontend/parallel/ops_info/pack_info.h"
|
||||
#include "frontend/parallel/ops_info/broadcast_to_info.h"
|
||||
#include "frontend/parallel/ops_info/unique_info.h"
|
||||
#include "frontend/parallel/ops_info/reluv2_info.h"
|
||||
|
||||
#endif // MINDSPORE_CCSRC_FRONTEND_PARALLEL_OPS_INFO_HEAD_FILES_H_
|
||||
|
|
|
@ -0,0 +1,183 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "frontend/parallel/ops_info/reluv2_info.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <memory>
|
||||
#include <vector>
|
||||
#include <utility>
|
||||
#include <functional>
|
||||
#include <numeric>
|
||||
|
||||
#include "frontend/parallel/device_matrix.h"
|
||||
#include "ir/value.h"
|
||||
#include "frontend/parallel/auto_parallel/costmodel.h"
|
||||
#include "frontend/parallel/context.h"
|
||||
#include "frontend/parallel/strategy.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace parallel {
|
||||
Status ReLUV2Info::SetCostUnderStrategy(const StrategyPtr &strategy) { return SetCostUnderStrategyBase(strategy); }
|
||||
|
||||
Status ReLUV2Info::CheckStrategy(const StrategyPtr &strategy) { return CheckStrategyValue(strategy, inputs_shape_); }
|
||||
|
||||
Status ReLUV2Info::GetAttrs() { return SUCCESS; }
|
||||
|
||||
Status ReLUV2Info::GenerateStrategies(int32_t stage_id) {
|
||||
Shape input0_split(inputs_shape_[0].size(), 1);
|
||||
Shapes splittable_inputs = {input0_split};
|
||||
|
||||
std::vector<StrategyPtr> sp_vector;
|
||||
if (GenerateStrategiesForIndependentInputs(stage_id, inputs_shape_, splittable_inputs, &sp_vector) != SUCCESS) {
|
||||
MS_LOG(ERROR) << name_ << " : Generate strategies for independent inputs() failed.";
|
||||
return FAILED;
|
||||
}
|
||||
size_t success = 0;
|
||||
for (auto &sp : sp_vector) {
|
||||
if (SetCostUnderStrategy(sp) == SUCCESS) {
|
||||
success++;
|
||||
MS_LOG(INFO) << name_ << " : Successfully generated " << success << " strategy";
|
||||
PrintStrategy(sp);
|
||||
}
|
||||
}
|
||||
return SUCCESS;
|
||||
}
|
||||
|
||||
Status ReLUV2Info::InferDevMatrixShape() {
|
||||
Strategys stra = strategy_->GetInputDim();
|
||||
Dimensions input_strategy = stra.at(0);
|
||||
|
||||
dev_matrix_shape_ = input_strategy;
|
||||
|
||||
return SUCCESS;
|
||||
}
|
||||
|
||||
Status ReLUV2Info::InferMirrorOps() {
|
||||
mirror_ops_.clear();
|
||||
|
||||
Shape tensor_map = inputs_tensor_map_[0];
|
||||
std::vector<Group> group;
|
||||
if (CreateGroupByTensorMap(tensor_map, &group) != SUCCESS) {
|
||||
MS_LOG(ERROR) << name_ << " : Create group failed.";
|
||||
return FAILED;
|
||||
}
|
||||
|
||||
OperatorVector mirror_op;
|
||||
if (group.empty()) {
|
||||
MS_LOG(INFO) << name_ << " : The mirror ops is empty.";
|
||||
return SUCCESS;
|
||||
} else {
|
||||
mirror_op = CreateMirrorOps(group[0].name(), group[0].GetDevNum());
|
||||
mirror_ops_.push_back(mirror_op);
|
||||
std::string group_name = group[0].name();
|
||||
MS_LOG(INFO) << name_ << " : Create the mirror ops success, the group name is " << group_name;
|
||||
}
|
||||
|
||||
return SUCCESS;
|
||||
}
|
||||
|
||||
Status ReLUV2Info::InferForwardCommunication() {
|
||||
// do nothing
|
||||
return SUCCESS;
|
||||
}
|
||||
|
||||
Status ReLUV2Info::InferTensorMap() {
|
||||
Shape tensor_map_index;
|
||||
size_t size = inputs_shape_.at(0).size();
|
||||
// such as 4: tensor_map_index [3,2,1,0]
|
||||
for (size_t i = 0; i < size; ++i) {
|
||||
tensor_map_index.push_back((int64_t)(size - i - 1));
|
||||
}
|
||||
|
||||
inputs_tensor_map_.push_back(tensor_map_index);
|
||||
// output and mask
|
||||
outputs_tensor_map_.push_back(tensor_map_index);
|
||||
outputs_tensor_map_.push_back(tensor_map_index);
|
||||
return SUCCESS;
|
||||
}
|
||||
|
||||
Status ReLUV2Info::InferTensorInfo() {
|
||||
if (inputs_shape_.empty() || outputs_shape_.empty() || inputs_tensor_map_.empty() || outputs_tensor_map_.empty()) {
|
||||
MS_LOG(ERROR) << name_ << ": Invalid args";
|
||||
return FAILED;
|
||||
}
|
||||
|
||||
TensorLayout input_layout, output_layout;
|
||||
// infer tensor layout
|
||||
if (input_layout.InitFromVector(dev_matrix_shape_, inputs_tensor_map_[0], inputs_shape_[0]) != SUCCESS) {
|
||||
MS_LOG(ERROR) << name_ << ": Infer input tensor layout failed.";
|
||||
return FAILED;
|
||||
}
|
||||
TensorInfo input_tensor_info(input_layout);
|
||||
inputs_tensor_info_.push_back(input_tensor_info);
|
||||
|
||||
if (output_layout.InitFromVector(dev_matrix_shape_, outputs_tensor_map_[0], outputs_shape_[0]) != SUCCESS) {
|
||||
MS_LOG(ERROR) << name_ << ": Infer output tensor layout failed.";
|
||||
return FAILED;
|
||||
}
|
||||
TensorInfo output_tensor_info(output_layout);
|
||||
// output and mask
|
||||
outputs_tensor_info_.push_back(output_tensor_info);
|
||||
outputs_tensor_info_.push_back(output_tensor_info);
|
||||
return SUCCESS;
|
||||
}
|
||||
|
||||
Status ReLUV2Info::InferAsLossDivisor() {
|
||||
if (!ParallelContext::GetInstance()->loss_repeated_mean()) {
|
||||
as_loss_divisor_ = 1;
|
||||
return SUCCESS;
|
||||
}
|
||||
|
||||
if (outputs_tensor_map_.empty()) {
|
||||
MS_LOG(ERROR) << name_ << ": The outputs tensor map is empty.";
|
||||
return FAILED;
|
||||
}
|
||||
|
||||
if (outputs_tensor_map_[0].empty()) {
|
||||
as_loss_divisor_ = SizeToInt(global_device_list_.size());
|
||||
MS_LOG(INFO) << name_ << ": The output is a scalar, use the dev size " << as_loss_divisor_ << ", loss divisor.";
|
||||
return SUCCESS;
|
||||
}
|
||||
|
||||
as_loss_divisor_ = ComputeRepeatDeviceNumByTensorMap(dev_matrix_shape_, outputs_tensor_map_[0]);
|
||||
MS_LOG(INFO) << name_ << ": the dev matrix shape is " << ShapeToString(dev_matrix_shape_)
|
||||
<< ", the output tensor map is " << ShapeToString(outputs_tensor_map_[0]) << ", loss divisor is "
|
||||
<< as_loss_divisor_;
|
||||
return SUCCESS;
|
||||
}
|
||||
|
||||
Status ReLUV2Info::Init(const StrategyPtr &strategy) {
|
||||
if (InitWithAutoRepeatCalc(strategy) != SUCCESS) {
|
||||
MS_LOG(ERROR) << name_ << " : Init failed.";
|
||||
return FAILED;
|
||||
}
|
||||
|
||||
MS_LOG(INFO) << name_ << " : Init success.";
|
||||
return SUCCESS;
|
||||
}
|
||||
|
||||
Status ReLUV2Info::InitForCostModel(const StrategyPtr &strategy) {
|
||||
if (InitForCostModelWithAutoRepeatCalc(strategy) != SUCCESS) {
|
||||
MS_LOG(ERROR) << name_ << " : Init for cost model failed.";
|
||||
return FAILED;
|
||||
}
|
||||
|
||||
MS_LOG(INFO) << name_ << " : Init for cost model success.";
|
||||
return SUCCESS;
|
||||
}
|
||||
} // namespace parallel
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,60 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_FRONTEND_PARALLEL_OPS_INFO_RELUV2_INFO_H_
|
||||
#define MINDSPORE_CCSRC_FRONTEND_PARALLEL_OPS_INFO_RELUV2_INFO_H_
|
||||
|
||||
#include <ir/value.h>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <unordered_map>
|
||||
#include <vector>
|
||||
|
||||
#include "frontend/parallel/auto_parallel/operator_costmodel.h"
|
||||
#include "frontend/parallel/ops_info/operator_info.h"
|
||||
#include "frontend/parallel/strategy.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace parallel {
|
||||
/*
|
||||
* The input, output and mask have the same tensormap.
|
||||
* And all dimensions of input are splitable.
|
||||
*/
|
||||
class ReLUV2Info : public OperatorInfo {
|
||||
public:
|
||||
ReLUV2Info(const std::string &operator_name, const Shapes &inputs_shape, const Shapes &outputs_shape,
|
||||
const PrimitiveAttrs &attrs)
|
||||
: OperatorInfo(operator_name, inputs_shape, outputs_shape, attrs, std::make_shared<ActivationCost>(false)) {}
|
||||
~ReLUV2Info() override = default;
|
||||
|
||||
Status Init(const StrategyPtr &strategy) override;
|
||||
Status InitForCostModel(const StrategyPtr &strategy) override;
|
||||
Status GenerateStrategies(int32_t stage_id) override;
|
||||
Status SetCostUnderStrategy(const StrategyPtr &strategy) override;
|
||||
|
||||
protected:
|
||||
Status InferMirrorOps() override;
|
||||
Status InferForwardCommunication() override;
|
||||
Status InferTensorMap() override;
|
||||
Status InferTensorInfo() override;
|
||||
Status InferDevMatrixShape() override;
|
||||
Status CheckStrategy(const StrategyPtr &strategy) override;
|
||||
Status GetAttrs() override;
|
||||
Status InferAsLossDivisor() override;
|
||||
};
|
||||
} // namespace parallel
|
||||
} // namespace mindspore
|
||||
#endif // MINDSPORE_CCSRC_FRONTEND_PARALLEL_OPS_INFO_RELUV2_INFO_H_
|
|
@ -0,0 +1,76 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
import mindspore as ms
|
||||
import mindspore.context as context
|
||||
from mindspore import Tensor, Parameter
|
||||
import mindspore.nn as nn
|
||||
from mindspore.common.api import _executor
|
||||
from mindspore.nn import TrainOneStepCell, Momentum
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self, mul_weight, strategy=None):
|
||||
super(Net, self).__init__()
|
||||
self.reluv2 = P.ReLUV2().shard(strategy)
|
||||
self.mul = P.Mul()
|
||||
self.weight = Parameter(mul_weight, "w1")
|
||||
|
||||
def construct(self, x):
|
||||
out = self.mul(x, self.weight)
|
||||
output, _ = self.reluv2(out)
|
||||
return output
|
||||
|
||||
|
||||
_w1 = Tensor(np.ones([32, 16, 48, 64]), dtype=ms.float32)
|
||||
_x = Tensor(np.ones([32, 16, 48, 64]), dtype=ms.float32)
|
||||
|
||||
|
||||
def compile_net(net):
|
||||
context.set_context(mode=context.GRAPH_MODE, save_graphs=True)
|
||||
optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
||||
train_net = TrainOneStepCell(net, optimizer)
|
||||
train_net.set_auto_parallel()
|
||||
train_net.set_train()
|
||||
_executor.compile(train_net, _x)
|
||||
context.reset_auto_parallel_context()
|
||||
|
||||
|
||||
def test_reluv2():
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
|
||||
strategy = ((2, 1, 2, 2),)
|
||||
net = Net(_w1, strategy)
|
||||
compile_net(net)
|
||||
|
||||
|
||||
def test_reluv2_no_full():
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
|
||||
strategy = ((2, 1, 2, 1),)
|
||||
net = Net(_w1, strategy)
|
||||
compile_net(net)
|
||||
|
||||
|
||||
def test_reluv2_no_strategy():
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
|
||||
strategy = None
|
||||
net = Net(_w1, strategy)
|
||||
compile_net(net)
|
||||
|
||||
|
||||
def test_reluv2_auto_parallel():
|
||||
context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=8, global_rank=0)
|
||||
net = Net(_w1)
|
||||
compile_net(net)
|
Loading…
Reference in New Issue