mindspore/tests/ut/python/nn/test_dense.py

149 lines
4.4 KiB
Python
Raw Normal View History

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
""" test nn.Dense """
import numpy as np
import pytest
2020-05-13 11:30:27 +08:00
import mindspore.context as context
2020-05-13 11:30:27 +08:00
import mindspore.nn as nn
from mindspore import Tensor
2020-05-13 11:30:27 +08:00
from mindspore.common.api import _executor
from ..ut_filter import non_graph_engine
def test_dense_none():
with pytest.raises(TypeError):
nn.Dense(3, 2, None, None)
@non_graph_engine
def test_dense_str_activation():
dense = nn.Dense(1, 1, activation='relu')
assert isinstance(dense.activation, nn.ReLU)
input_data = Tensor(np.random.randint(0, 255, [1, 1]).astype(np.float32))
dense(input_data)
def test_dense_weight_error():
dim_error = Tensor(np.array([[[0.1], [0.3], [0.6]], [[0.4], [0.5], [0.2]]]))
with pytest.raises(ValueError):
nn.Dense(3, 2, dim_error)
shape_error = Tensor(np.array([[0.1, 0.3, 0.6], [0.4, 0.5, 0.2]]))
with pytest.raises(ValueError):
nn.Dense(2, 2, shape_error)
with pytest.raises(ValueError):
nn.Dense(3, 3, shape_error)
def test_dense_bias_error():
dim_error = Tensor(np.array([[0.5, 0.3]]))
with pytest.raises(ValueError):
nn.Dense(3, 2, bias_init=dim_error)
shape_error = Tensor(np.array([0.5, 0.3, 0.4]))
with pytest.raises(ValueError):
nn.Dense(3, 2, bias_init=shape_error)
def test_dense_channels_error():
with pytest.raises(ValueError):
nn.Dense(3, 0)
with pytest.raises(ValueError):
nn.Dense(-1, 2)
class Net(nn.Cell):
""" Net definition """
2020-05-13 11:30:27 +08:00
def __init__(self,
input_channels,
output_channels,
weight='normal',
bias='zeros',
has_bias=True,
activation=None):
super(Net, self).__init__()
self.dense = nn.Dense(input_channels,
output_channels,
weight,
bias,
has_bias,
activation=activation)
def construct(self, input_x):
return self.dense(input_x)
def test_compile():
""" test_compile """
# has bias
weight = Tensor(np.random.randint(0, 255, [8, 64]).astype(np.float32))
bias = Tensor(np.random.randint(0, 255, [8]).astype(np.float32))
net = Net(64, 8, weight=weight, bias=bias)
input_data = Tensor(np.random.randint(0, 255, [128, 64]).astype(np.float32))
_executor.compile(net, input_data)
# training
net_train = Net(64, 8, weight=weight, bias=bias)
net_train.set_train()
_executor.compile(net_train, input_data)
def test_compile_2():
""" test_compile_2 """
# no bias
weight = Tensor(np.random.randint(0, 255, [8, 64]).astype(np.float32))
net = Net(64, 8, weight=weight, has_bias=False)
input_data = Tensor(np.random.randint(0, 255, [128, 64]).astype(np.float32))
_executor.compile(net, input_data)
# training
net_train = Net(64, 8, weight=weight, has_bias=False)
net_train.set_train()
_executor.compile(net_train, input_data)
def test_compile_3():
""" test_compile_3 """
# test for Graph mode
# has bias
context.set_context(mode=context.GRAPH_MODE)
net = Net(128, 10)
input_data = Tensor(np.random.randint(0, 255, [128, 128]).astype(np.float32))
_executor.compile(net, input_data)
# training
net_train = Net(128, 10)
net_train.set_train()
_executor.compile(net_train, input_data)
def test_compile_4():
""" test_compile_4 """
# test for Graph mode
# no bias
context.set_context(mode=context.GRAPH_MODE)
net = Net(128, 10, has_bias=False)
input_data = Tensor(np.random.randint(0, 255, [128, 128]).astype(np.float32))
_executor.compile(net, input_data)
# training
net_train = Net(128, 10, has_bias=False)
net_train.set_train()
_executor.compile(net_train, input_data)