mindspore/tests/ut/python/parallel/test_get_parameter_layout.py

61 lines
2.3 KiB
Python
Raw Normal View History

# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
2020-05-18 16:42:35 +08:00
import mindspore as ms
import mindspore.common.api as me
2020-05-18 16:42:35 +08:00
import mindspore.nn as nn
from mindspore import Tensor, Parameter
from mindspore import context
from mindspore.ops import operations as P
def test_get_parameter_layout():
class Net(nn.Cell):
def __init__(self, strategy1, strategy2, weight):
super().__init__()
self.weight = Parameter(weight, "w1")
self.matmul = P.MatMul(transpose_a=False, transpose_b=True).set_strategy(strategy1)
self.relu = P.ReLU().set_strategy(strategy2)
def construct(self, x):
out = self.matmul(x, self.weight)
out = self.relu(out)
return out
context.reset_auto_parallel_context()
context.set_auto_parallel_context(device_num=8, global_rank=0)
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
strategy1 = ((2, 1), (4, 1))
2020-05-18 10:31:46 +08:00
strategy2 = ((2, 4),)
context.set_context(mode=context.GRAPH_MODE)
x = Tensor(np.ones([32, 32]), dtype=ms.float32)
weight = Tensor(np.ones([64, 32]), dtype=ms.float32)
net = Net(strategy1, strategy2, weight)
2020-05-07 10:40:59 +08:00
net.set_auto_parallel()
exe = me._executor
2020-05-15 17:39:56 +08:00
exe.compile(net, x, phase='train', auto_parallel_mode=True)
2020-08-12 19:16:18 +08:00
x_layout = [[2, 4], [1, -1], [16, 32], [0], [1]] # device_arrangement = [2, 4], tensor_map = [1, -1]
weight_layout = [[2, 4], [0, -1], [16, 32], [0], [1]] # device_arrangement = [2, 4], tensor_map = [0, -1]
expect_dict = {'x': x_layout, 'w1': weight_layout}
2020-05-22 09:13:09 +08:00
# to be resovled: static local variable count_p is used in step_parallel.cc, it needs to be reset between each ut
assert net.parameter_layout_dict == expect_dict
if __name__ == '__main__':
test_get_parameter_layout()