2020-03-27 14:49:12 +08:00
|
|
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
# ============================================================================
|
|
|
|
""" test_momentum """
|
|
|
|
import functools
|
|
|
|
import numpy as np
|
2020-05-18 16:42:35 +08:00
|
|
|
|
2020-03-27 14:49:12 +08:00
|
|
|
import mindspore.nn as nn
|
2020-05-19 21:56:17 +08:00
|
|
|
import mindspore.context as context
|
2020-05-18 16:42:35 +08:00
|
|
|
from mindspore import Parameter, ParameterTuple, Tensor
|
2020-03-27 14:49:12 +08:00
|
|
|
from mindspore.ops import composite as C
|
2020-05-18 16:42:35 +08:00
|
|
|
from mindspore.ops import functional as F
|
2020-03-27 14:49:12 +08:00
|
|
|
from mindspore.ops import operations as P
|
|
|
|
from ..ut_filter import non_graph_engine
|
|
|
|
from ....mindspore_test_framework.mindspore_test import mindspore_test
|
|
|
|
from ....mindspore_test_framework.pipeline.forward.compile_forward \
|
|
|
|
import pipeline_for_compile_forward_ge_graph_for_case_by_case_config
|
2020-05-18 10:31:46 +08:00
|
|
|
|
2020-03-27 14:49:12 +08:00
|
|
|
# pylint: disable=W0613
|
|
|
|
# W0613: unused-argument
|
|
|
|
|
|
|
|
|
|
|
|
run_opt = C.MultitypeFuncGraph("run_opt")
|
|
|
|
|
|
|
|
|
2020-08-25 20:16:08 +08:00
|
|
|
grad_by_list = C.GradOperation(get_by_list=True)
|
2020-08-24 10:22:10 +08:00
|
|
|
|
|
|
|
|
2020-04-17 12:03:50 +08:00
|
|
|
@run_opt.register("Function", "Tensor", "Tensor", "Tensor",
|
2020-03-27 14:49:12 +08:00
|
|
|
"Tensor", "Tensor",
|
|
|
|
"Tensor")
|
|
|
|
def tensor_run_opt(opt, iters, learning_rate, momentum,
|
|
|
|
gradient, variable, moment):
|
|
|
|
""" tensor_run_opt """
|
|
|
|
success = True
|
2020-06-04 14:50:53 +08:00
|
|
|
new_weight = opt(variable, moment, learning_rate, gradient, momentum)[0]
|
2020-03-27 14:49:12 +08:00
|
|
|
success = F.depend(success, F.assign(variable, new_weight))
|
|
|
|
return success
|
|
|
|
|
|
|
|
|
|
|
|
class OptimizerByMomentum(nn.Cell):
|
|
|
|
""" OptimizerByMomentum definition """
|
2020-05-18 10:31:46 +08:00
|
|
|
|
2020-03-27 14:49:12 +08:00
|
|
|
def __init__(self, weights):
|
|
|
|
super(OptimizerByMomentum, self).__init__()
|
|
|
|
self.learning_rate = Parameter(0.1, name="learning_rate")
|
|
|
|
self.momentum = Parameter(0.05, name="momentum")
|
|
|
|
self.iter = Parameter(0, name="iter")
|
|
|
|
|
|
|
|
self.weights = weights
|
|
|
|
self.moments = weights.clone(prefix="moments", init='zeros')
|
|
|
|
|
|
|
|
self.hyper_map = C.HyperMap()
|
|
|
|
self.opt = P.ApplyMomentum()
|
|
|
|
|
|
|
|
def construct(self, grads):
|
|
|
|
success = True
|
|
|
|
weights = self.weights
|
|
|
|
moments = self.moments
|
|
|
|
success = self.hyper_map(F.partial(run_opt, self.opt, self.iter,
|
|
|
|
self.learning_rate, self.momentum),
|
|
|
|
grads, weights, moments)
|
|
|
|
return success
|
|
|
|
|
|
|
|
|
|
|
|
class TrainStepWrap(nn.Cell):
|
|
|
|
""" TrainStepWrap definition """
|
2020-05-18 10:31:46 +08:00
|
|
|
|
2020-03-27 14:49:12 +08:00
|
|
|
def __init__(self, network):
|
|
|
|
super(TrainStepWrap, self).__init__()
|
|
|
|
self.network = network
|
|
|
|
self.weights = ParameterTuple(network.get_parameters())
|
|
|
|
self.optimizer = OptimizerByMomentum(self.weights)
|
|
|
|
self.hyper_map = C.HyperMap()
|
|
|
|
|
|
|
|
def construct(self, x, label):
|
|
|
|
weights = self.weights
|
2020-08-24 10:22:10 +08:00
|
|
|
grads = grad_by_list(self.network, weights)(x, label)
|
2020-03-27 14:49:12 +08:00
|
|
|
return self.optimizer(grads)
|
|
|
|
|
|
|
|
|
|
|
|
class NetWithLossClass(nn.Cell):
|
|
|
|
""" NetWithLossClass definition """
|
2020-05-18 10:31:46 +08:00
|
|
|
|
2020-03-27 14:49:12 +08:00
|
|
|
def __init__(self, network):
|
|
|
|
super(NetWithLossClass, self).__init__(auto_prefix=False)
|
|
|
|
self.loss = nn.SoftmaxCrossEntropyWithLogits()
|
|
|
|
self.network = network
|
|
|
|
|
|
|
|
def construct(self, x, label):
|
|
|
|
predict = self.network(x)
|
|
|
|
return self.loss(predict, label)
|
|
|
|
|
|
|
|
|
|
|
|
class Net(nn.Cell):
|
|
|
|
""" Net definition """
|
2020-05-18 10:31:46 +08:00
|
|
|
|
2020-03-27 14:49:12 +08:00
|
|
|
def __init__(self):
|
|
|
|
super(Net, self).__init__()
|
|
|
|
self.weight = Parameter(Tensor(np.ones([64, 10]).astype(np.float32)), name="weight")
|
|
|
|
self.bias = Parameter(Tensor(np.ones([10]).astype(np.float32)), name="bias")
|
|
|
|
self.matmul = P.MatMul()
|
|
|
|
self.biasAdd = P.BiasAdd()
|
|
|
|
|
|
|
|
def construct(self, x):
|
|
|
|
return self.biasAdd(self.matmul(x, self.weight), self.bias)
|
|
|
|
|
|
|
|
|
|
|
|
test_case_ops = [
|
|
|
|
('Momentum', {
|
|
|
|
'block': TrainStepWrap(NetWithLossClass(Net())),
|
|
|
|
'desc_inputs': [Tensor(np.ones([1, 64]).astype(np.float32)),
|
|
|
|
Tensor(np.zeros([1, 10]).astype(np.float32))]}),
|
|
|
|
]
|
|
|
|
|
|
|
|
test_case_lists = [test_case_ops]
|
|
|
|
test_exec_case = functools.reduce(lambda x, y: x + y, test_case_lists)
|
|
|
|
# use -k to select certain testcast
|
|
|
|
# pytest tests/python/ops/test_ops.py::test_backward -k LayerNorm
|
|
|
|
|
|
|
|
|
2020-05-18 10:31:46 +08:00
|
|
|
|
2020-03-27 14:49:12 +08:00
|
|
|
@non_graph_engine
|
|
|
|
@mindspore_test(pipeline_for_compile_forward_ge_graph_for_case_by_case_config)
|
|
|
|
def test_exec():
|
|
|
|
context.set_context(mode=context.GRAPH_MODE)
|
|
|
|
return test_exec_case
|