mindspore/include/infer_tensor.h

205 lines
6.2 KiB
C
Raw Normal View History

/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_INCLUDE_INFER_TENSOR_H_
#define MINDSPORE_INCLUDE_INFER_TENSOR_H_
#include <utility>
#include <vector>
#include <memory>
#include <numeric>
#include <map>
#include <functional>
#include "securec/include/securec.h"
#include "include/infer_log.h"
namespace mindspore {
#define MS_API __attribute__((visibility("default")))
namespace inference {
enum DataType {
kMSI_Unknown = 0,
kMSI_Bool = 1,
kMSI_Int8 = 2,
kMSI_Int16 = 3,
kMSI_Int32 = 4,
kMSI_Int64 = 5,
kMSI_Uint8 = 6,
kMSI_Uint16 = 7,
kMSI_Uint32 = 8,
kMSI_Uint64 = 9,
kMSI_Float16 = 10,
kMSI_Float32 = 11,
kMSI_Float64 = 12,
};
class InferTensorBase {
public:
InferTensorBase() = default;
virtual ~InferTensorBase() = default;
virtual DataType data_type() const = 0;
virtual void set_data_type(DataType type) = 0;
virtual std::vector<int64_t> shape() const = 0;
virtual void set_shape(const std::vector<int64_t> &shape) = 0;
virtual const void *data() const = 0;
virtual size_t data_size() const = 0;
virtual bool resize_data(size_t data_len) = 0;
virtual void *mutable_data() = 0;
bool set_data(const void *data, size_t data_len) {
resize_data(data_len);
if (mutable_data() == nullptr) {
MSI_LOG_ERROR << "set data failed, data len " << data_len;
return false;
}
if (data_size() != data_len) {
MSI_LOG_ERROR << "set data failed, tensor current data size " << data_size() << " not match data len "
<< data_len;
return false;
}
if (data_len == 0) {
return true;
}
memcpy_s(mutable_data(), data_size(), data, data_len);
return true;
}
int64_t ElementNum() const {
std::vector<int64_t> shapex = shape();
return std::accumulate(shapex.begin(), shapex.end(), 1LL, std::multiplies<int64_t>());
}
int GetTypeSize(DataType type) const {
const std::map<DataType, size_t> type_size_map{
{kMSI_Bool, sizeof(bool)}, {kMSI_Float64, sizeof(double)}, {kMSI_Int8, sizeof(int8_t)},
{kMSI_Uint8, sizeof(uint8_t)}, {kMSI_Int16, sizeof(int16_t)}, {kMSI_Uint16, sizeof(uint16_t)},
{kMSI_Int32, sizeof(int32_t)}, {kMSI_Uint32, sizeof(uint32_t)}, {kMSI_Int64, sizeof(int64_t)},
{kMSI_Uint64, sizeof(uint64_t)}, {kMSI_Float16, sizeof(uint16_t)}, {kMSI_Float32, sizeof(float)},
};
auto it = type_size_map.find(type);
if (it != type_size_map.end()) {
return it->second;
}
return 0;
}
};
class InferTensor : public InferTensorBase {
public:
DataType type_;
std::vector<int64_t> shape_;
std::vector<uint8_t> data_;
public:
InferTensor() = default;
InferTensor(DataType type, std::vector<int64_t> shape, const void *data, size_t data_len) {
set_data_type(type);
set_shape(shape);
set_data(data, data_len);
}
void set_data_type(DataType type) override { type_ = type; }
DataType data_type() const override { return type_; }
void set_shape(const std::vector<int64_t> &shape) override { shape_ = shape; }
std::vector<int64_t> shape() const override { return shape_; }
const void *data() const override { return data_.data(); }
size_t data_size() const override { return data_.size(); }
bool resize_data(size_t data_len) override {
data_.resize(data_len);
return true;
}
void *mutable_data() override { return data_.data(); }
};
class InferImagesBase {
public:
virtual size_t batch_size() const = 0;
virtual bool get(size_t index, const void *&pic_buffer, uint32_t &pic_size) const = 0;
virtual size_t input_index() const = 0; // the index of images as input in model
};
class RequestBase {
public:
virtual size_t size() const = 0;
virtual const InferTensorBase *operator[](size_t index) const = 0;
};
class ImagesRequestBase {
public:
virtual size_t size() const = 0;
virtual const InferImagesBase *operator[](size_t index) const = 0;
};
class ReplyBase {
public:
virtual size_t size() const = 0;
virtual InferTensorBase *operator[](size_t index) = 0;
virtual const InferTensorBase *operator[](size_t index) const = 0;
virtual InferTensorBase *add() = 0;
virtual void clear() = 0;
};
class VectorInferTensorWrapReply : public ReplyBase {
public:
explicit VectorInferTensorWrapReply(std::vector<InferTensor> &tensor_list) : tensor_list_(tensor_list) {}
size_t size() const { return tensor_list_.size(); }
InferTensorBase *operator[](size_t index) {
if (index >= tensor_list_.size()) {
MSI_LOG_ERROR << "visit invalid index " << index << " total size " << tensor_list_.size();
return nullptr;
}
return &(tensor_list_[index]);
}
const InferTensorBase *operator[](size_t index) const {
if (index >= tensor_list_.size()) {
MSI_LOG_ERROR << "visit invalid index " << index << " total size " << tensor_list_.size();
return nullptr;
}
return &(tensor_list_[index]);
}
InferTensorBase *add() {
tensor_list_.push_back(InferTensor());
return &(tensor_list_.back());
}
void clear() { tensor_list_.clear(); }
std::vector<InferTensor> &tensor_list_;
};
class VectorInferTensorWrapRequest : public RequestBase {
public:
explicit VectorInferTensorWrapRequest(const std::vector<InferTensor> &tensor_list) : tensor_list_(tensor_list) {}
size_t size() const { return tensor_list_.size(); }
const InferTensorBase *operator[](size_t index) const {
if (index >= tensor_list_.size()) {
MSI_LOG_ERROR << "visit invalid index " << index << " total size " << tensor_list_.size();
return nullptr;
}
return &(tensor_list_[index]);
}
const std::vector<InferTensor> &tensor_list_;
};
} // namespace inference
} // namespace mindspore
#endif // MINDSPORE_INCLUDE_INFER_TENSOR_H_