mindspore/tests/ut/python/ops/test_ops.py

1223 lines
42 KiB
Python
Raw Normal View History

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
""" test ops """
import functools
import numpy as np
from mindspore import ops
from mindspore.ops import functional as F
from mindspore.ops import operations as P
from mindspore.ops.operations import _grad_ops as G
import mindspore.ops.composite as C
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common import dtype as mstype
from ..ut_filter import non_graph_engine
from ....mindspore_test_framework.mindspore_test import mindspore_test
from ....mindspore_test_framework.pipeline.forward.compile_forward\
import (pipeline_for_compile_forward_ge_graph_for_case_by_case_config,
pipeline_for_compile_forward_ge_graph_for_case_by_case_config_exception)
from ....mindspore_test_framework.pipeline.gradient.compile_gradient\
import pipeline_for_compile_grad_ge_graph_for_case_by_case_config
class InputBackward(nn.Cell):
def __init__(self, network):
super(InputBackward, self).__init__()
self.network = network
self.network.set_train()
self.grad = C.grad_all_with_sens
def construct(self, x1, x2, x3, sens):
return self.grad(self.network)(x1, x2, x3, sens)
class NetForTupleInput(nn.Cell):
def __init__(self, op):
super(NetForTupleInput, self).__init__()
self.op = op
def construct(self, x1, x2):
return self.op((x1, x2))
class StridedSlicessdNet(nn.Cell):
def __init__(self):
super(StridedSlicessdNet, self).__init__()
self.rank = P.Rank()
def construct(self, x1):
return P.StridedSlice(1, 1, 0, self.rank(x1), 0)(x1, (0, 0), (0, 0), (1, 1))
class NetForConcat(nn.Cell):
def __init__(self):
super(NetForConcat, self).__init__()
self.concat = P.Concat()
def construct(self, x1):
return self.concat((x1, x1))
class NetForConcat1(nn.Cell):
def __init__(self):
super(NetForConcat1, self).__init__()
self.concat = P.Concat()
def construct(self, x1, x2):
return self.concat((x1, x2))
class NetForPackInput(nn.Cell):
2020-04-06 10:22:47 +08:00
def __init__(self, op):
super(NetForPackInput, self).__init__()
2020-04-06 10:22:47 +08:00
self.op = op
self.mul = P.Mul()
def construct(self, *args):
t = ()
for i in range(len(args)):
t = t + (self.mul(args[i], args[i]),)
return self.op(t)
class NetForUnpackInput(nn.Cell):
2020-04-06 10:22:47 +08:00
def __init__(self, op):
super(NetForUnpackInput, self).__init__()
2020-04-06 10:22:47 +08:00
self.op = op
self.mul = P.Mul()
def construct(self, x1):
return self.op((self.mul(x1, x1)))
class NetForFlatten(nn.Cell):
def __init__(self):
super(NetForFlatten, self).__init__()
self.flatten = P.Flatten()
def construct(self, x, y):
return self.flatten(x) + y
class NetForFlatten0D(nn.Cell):
def __init__(self):
super(NetForFlatten0D, self).__init__()
self.flatten = P.Flatten()
def construct(self, x):
return self.flatten(x)
class ArgmaxNet(nn.Cell):
def __init__(self):
super(ArgmaxNet, self).__init__()
self.argmax = P.Argmax(axis=1)
def construct(self, input):
return self.argmax(input)
class ArgminNet(nn.Cell):
def __init__(self):
super(ArgminNet, self).__init__()
self.argmin = P.Argmin(axis=1)
def construct(self, input):
return self.argmin(input)
class CumSumNet(nn.Cell):
def __init__(self):
super(CumSumNet, self).__init__()
self.cumsum = P.CumSum()
self.axis = 1
def construct(self, input):
return self.cumsum(input, self.axis)
class SummaryNet(nn.Cell):
def __init__(self,):
super(SummaryNet, self).__init__()
self.s = P.ScalarSummary()
self.add = P.TensorAdd()
def construct(self, x, y):
self.s("x1", x)
return self.add(x, y)
class HistogramSummaryNet(nn.Cell):
def __init__(self,):
super(HistogramSummaryNet, self).__init__()
self.summary = P.HistogramSummary()
self.add = P.TensorAdd()
def construct(self, x, y):
out = self.add(x, y)
string_in = "out"
self.summary(string_in, out)
return out
test_case_math_ops = [
('Neg', {
'block': P.Neg(),
'desc_inputs': [[1, 3, 4, 4]],
'desc_bprop': [[1, 3, 4, 4]]}),
('Sub', {
'block': P.Sub(),
'desc_inputs': [[3, 5], [2, 3, 3, 5]],
'desc_bprop': [[2, 3, 3, 5]]}),
('TensorAdd', {
'block': P.TensorAdd(),
'desc_inputs': [[3, 5], [2, 3, 3, 5]],
'desc_bprop': [[2, 3, 3, 5]]}),
('Mul0', {
'block': P.Mul(),
'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5]],
'desc_bprop': [[2, 3, 3, 5]]}),
('Mul1', {
'block': P.Mul(),
'desc_inputs': [[2, 3, 1, 1], [2, 3, 3, 5]],
'desc_bprop': [[2, 3, 3, 5]]}),
('Mul2', {
'block': P.Mul(),
'desc_inputs': [[2, 3, 3, 5], [2, 3, 1, 1]],
'desc_bprop': [[2, 3, 3, 5]],
'skip': ['backward']}),
('Mul3', {
'block': P.Mul(),
'desc_inputs': [[3, 5], [2, 3, 3, 5]],
'desc_bprop': [[2, 3, 3, 5]],
'skip': ['backward']}),
('Mul4', {
'block': P.Mul(),
'desc_inputs': [[2, 3, 3, 5], [3, 5]],
'desc_bprop': [[2, 3, 3, 5]],
'skip': ['backward']}),
('Add0', {
'block': P.TensorAdd(),
'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5]],
'desc_bprop': [[2, 3, 3, 5]]}),
('Add1', {
'block': P.TensorAdd(),
'desc_inputs': [[3, 5], [2, 3, 3, 5]],
'desc_bprop': [[2, 3, 3, 5]],
'skip': ['backward']}),
('Add2', {
'block': P.TensorAdd(),
'desc_inputs': [[2, 3, 3, 5], [3, 5]],
'desc_bprop': [[2, 3, 3, 5]],
'skip': ['backward']}),
('Add3', {
'block': P.TensorAdd(),
'desc_inputs': [[2, 3, 1, 1], [2, 3, 3, 5]],
'desc_bprop': [[2, 3, 3, 5]],
'skip': ['backward']}),
('Add4', {
'block': P.TensorAdd(),
'desc_inputs': [[2, 3, 3, 5], [2, 3, 1, 1]],
'desc_bprop': [[2, 3, 3, 5]],
'skip': ['backward']}),
('Minimum', {
'block': P.Minimum(),
'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5]],
'desc_bprop': [[2, 3, 3, 5]]}),
('Pow_0', {
'block': P.Pow(),
'desc_const': [2.0],
'desc_inputs': [[2, 3, 3, 5]],
'desc_bprop': [[2, 3, 3, 5]]}),
('Pow_1', {
'block': P.Pow(),
'desc_inputs': [[3, 5], [2, 3, 3, 5]],
'desc_bprop': [[2, 3, 3, 5]]}),
('Exp', {
'block': P.Exp(),
'desc_inputs': [[2, 3]],
'desc_bprop': [[2, 3]]}),
2020-04-21 09:31:39 +08:00
('Erf', {
'block': P.Erf(),
'desc_inputs': [Tensor(np.array([-2, -1, 0, 1, 2]).astype(np.float16))],
'desc_bprop': [Tensor(np.array([-2, -1, 0, 1, 2]).astype(np.float16))]}),
('Floor', {
'block': P.Floor(),
'desc_inputs': [[2, 512, 56, 56]],
'desc_bprop': [[2, 512, 56, 56]],
'skip': ['backward']}),
('ACos', {
'block': P.ACos(),
'desc_inputs': [[2, 3]],
'desc_bprop': [[2, 3]]}),
2020-04-01 11:14:21 +08:00
('Acosh', {
'block': P.Acosh(),
'desc_inputs': [[3, 4, 5]],
'desc_bprop': [[3, 4, 5]]}),
('Sin', {
'block': P.Sin(),
'desc_inputs': [[2, 3]],
'desc_bprop': [[2, 3]]}),
('Reciprocal', {
'block': P.Reciprocal(),
'desc_inputs': [[2, 3, 3, 5]],
'desc_bprop': [[2, 3, 3, 5]]}),
('Minimum_0', {
'block': P.Minimum(),
'desc_inputs': [[2, 3, 3, 5], [3, 3, 5]],
'desc_bprop': [[2, 3, 3, 5]]}),
('Maximum', {
'block': P.Maximum(),
'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5]],
'desc_bprop': [[2, 3, 3, 5]]}),
('Maximum_0', {
'block': P.Maximum(),
'desc_inputs': [[3, 5], [2, 3, 3, 5]],
'desc_bprop': [[2, 3, 3, 5]]}),
('MaximumGrad', {
'block': G.MaximumGrad(),
'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5], [2, 3, 3, 5]],
'skip': ['backward']}),
('MinimumGrad', {
'block': G.MinimumGrad(),
'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5], [2, 3, 3, 5]],
'skip': ['backward']}),
('StridedSlice', {
'block': P.StridedSlice(),
'desc_const': [(0, 1, 2, 1),
(2, 3, 3, 4),
(1, 1, 1, 1)],
'desc_inputs': [[2, 3, 3, 5]],
'desc_bprop': [[2, 2, 1, 3]]}),
('Slice_1', {
'block': P.Slice(),
'desc_const': [(0, 1, 2, 1),
(1, 1, 1, 2)],
'desc_inputs': [[2, 3, 3, 5]],
'desc_bprop': [[1, 1, 1, 2]]}),
('StridedSliceGrad', {
'block': G.StridedSliceGrad(),
'desc_const': [(64, 1, 1024),
(0, 1, 0),
(64, 2, 1024),
(1, 1, 1)],
'desc_inputs': [[64, 128, 1024]],
'skip': ['backward']}),
('RandomChoiceWithMask', {
'block': P.RandomChoiceWithMask(256),
'desc_inputs': [Tensor(np.random.rand(24000, 4).astype(np.bool_))],
'desc_bprop': [[256,4], [256,4]],
'skip': ['backward']}),
('LessEqual', {
'block': P.LessEqual(),
'desc_inputs': [Tensor(np.random.rand(4).astype(np.float16)),
Tensor(np.random.rand(4).astype(np.float16))],
'skip': ['backward']}),
('Less', {
'block': P.Less(),
'desc_inputs': [[2, 1, 4, 5], [2, 1, 4, 5]],
'desc_bprop': [Tensor(np.zeros((2, 1, 4, 5), np.bool_))],
'skip': ['backward']}),
('RealDiv_0', {
'block': P.RealDiv(),
'desc_const': [Tensor(2048.0), Tensor(0.0)],
'desc_inputs': [],
'skip': ['backward']}),
('RealDiv', {
'block': P.RealDiv(),
'desc_inputs': [[4], Tensor(np.ones(4).astype(np.float32))],
'desc_bprop': [[4]]}),
('RealDiv_1', {
'block': P.RealDiv(),
'desc_inputs': [[512, 1024], [512, 1024]],
'desc_bprop': [[512, 1024]]}),
('FloorDiv', {
'block': P.FloorDiv(),
'desc_inputs': [Tensor(np.random.rand(4).astype(np.float16)),
Tensor(np.random.rand(4).astype(np.float16))],
'skip': ['backward']}),
2020-04-01 11:14:21 +08:00
('FloorMod', {
'block': P.FloorMod(),
2020-04-30 10:42:31 +08:00
'desc_inputs': [[3, 4, 5], [2, 3, 4, 5]],
'desc_bprop': [[2, 3, 4, 5]]}),
('identity', {
'block': ops.functional.identity,
'desc_inputs': [[2, 2]],
'skip': ['backward']}),
('MatMul_1', {
'block': P.MatMul(transpose_a=False, transpose_b=False),
'desc_inputs': [[1024, 160], [160, 1024]],
'desc_bprop': [[1024, 1024]]}),
('MatMul_2', {
'block': P.MatMul(transpose_a=True, transpose_b=True),
'desc_inputs': [[160, 1024], [1024, 160]],
'desc_bprop': [[1024, 1024]]}),
('Sub', {
'block': P.Sub(),
'desc_inputs': [[3], [3]],
'desc_bprop': [[3]]}),
('TruncatedNormal', {
'block': P.TruncatedNormal(),
'desc_const': [(1, 2, 3)],
'desc_inputs': [],
'skip': ['backward'],
'add_fake_input': True}),
('Select', {
'block': P.Select(),
'desc_inputs': [Tensor(np.array([[True, False, False], [False, True, True]])),
[2, 3], [2, 3]],
'desc_bprop': [[2, 3]]}),
('Rank', {
'block': P.Rank(),
'desc_inputs': [[2, 3]],
'skip': ['backward']}),
('InvertPermutation', {
'block': P.InvertPermutation(),
'desc_const': [(0, 3, 1, 2)],
'desc_inputs': [],
'skip': ['backward']}),
('Square', {
'block': P.Square(),
'desc_inputs': [[4]],
'desc_bprop': [[4]]}),
('Rsqrt', {
'block': P.Rsqrt(),
'desc_inputs': [[4]],
'desc_bprop': [[4]]}),
('Sqrt', {
'block': P.Sqrt(),
'desc_inputs': [[4]],
'desc_bprop': [[4]]}),
('RealDiv', {
'block': P.RealDiv(),
'desc_inputs': [[4, 5], [2, 3, 4, 5]],
'desc_bprop': [[2, 3, 4, 5]]}),
('Div', {
'block': P.Div(),
'desc_inputs': [[4, 5], [2, 3, 4, 5]],
'desc_bprop': [[2, 3, 4, 5]]}),
('Equal', {
'block': P.Equal(),
'desc_inputs': [[3, 4, 5], [4, 5]],
'desc_bprop': [Tensor(np.zeros((3, 4, 5), np.bool_))]}),
('NotEqual', {
'block': P.NotEqual(),
'desc_inputs': [[4, 1], [2, 3, 4, 5]],
'desc_bprop': [Tensor(np.ones((2, 3, 4, 5), np.bool_))]}),
('NotEqual_0', {
'block': P.NotEqual(),
'desc_inputs': [ 1, [2, 3, 4, 5]],
'desc_bprop': [Tensor(np.ones((2, 3, 4, 5), np.bool_))],
'skip': ['backward']}),
('Greater', {
'block': P.Greater(),
'desc_inputs': [[2, 3, 4, 1], [4, 5]],
'desc_bprop': [Tensor(np.ones((2, 3, 4, 5), np.bool_))]}),
('GreaterEqual', {
'block': P.GreaterEqual(),
'desc_inputs': [[2, 3, 4, 1], [4, 5]],
'desc_bprop': [Tensor(np.ones((2, 3, 4, 5), np.bool_))]}),
('LogicalNot', {
'block': P.LogicalNot(),
'desc_inputs': [Tensor(np.zeros((3, 4, 5), np.bool_))],
'desc_bprop': [Tensor(np.ones((3, 4, 5), np.bool_))]}),
('LogicalAnd', {
'block': P.LogicalAnd(),
'desc_inputs': [Tensor(np.zeros((2, 3, 4), np.bool_)), Tensor(np.ones((1), np.bool_))],
'desc_bprop': [Tensor(np.zeros((2, 3, 4), np.bool_))]}),
('LogicalOr', {
'block': P.LogicalOr(),
'desc_inputs': [Tensor(np.zeros((3, 4, 5), np.bool_)), Tensor(np.ones((3, 1, 1), np.bool_))],
'desc_bprop': [Tensor(np.zeros((3, 4, 5), np.bool_))]}),
('NpuAllocFloatStatus', {
'block': P.NPUAllocFloatStatus(),
'desc_inputs': [],
'add_fack_input': True,
'fack_input_type': np.float32,
'desc_bprop': [Tensor(np.zeros([8]).astype(np.float32))],
'skip': ['backward']}),
('NpuGetFloatStatus', {
'block': P.NPUGetFloatStatus(),
'desc_inputs': [Tensor(np.zeros([8]).astype(np.float32))],
'desc_bprop': [Tensor(np.zeros([8]).astype(np.float32))],
'skip': ['backward']}),
('NpuClearFloatStatus', {
'block': P.NPUClearFloatStatus(),
'desc_inputs': [Tensor(np.zeros([8]).astype(np.float32))],
'desc_bprop': [Tensor(np.zeros([8]).astype(np.float32))],
'skip': ['backward']}),
('CheckValid', {
'block': P.CheckValid(),
'desc_inputs': [[20000, 4], [3]],
'desc_bprop': [[20000]],
'skip': ['backward']}),
('NMSWithMask', {
'block': P.NMSWithMask(0.5),
'desc_inputs': [[128, 5]],
'desc_bprop': [[128, 5], [128], [128]],
'skip': ['backward']}),
('Abs', {
'block': P.Abs(),
'desc_inputs': [[4]],
'desc_bprop': [[4]]}),
('CumSum', {
'block': P.CumSum(),
'desc_const': [0],
'desc_inputs': [Tensor(np.array([[3, 4],[1, 6]]).astype(np.float16))],
'desc_bprop': [Tensor(np.array([[3, 4],[4, 10]]).astype(np.float16))]}),
('ReduceSum_3', {
'block': P.ReduceSum(),
'desc_const': [0],
'desc_inputs': [[3, 2]],
'desc_bprop': [[2]]}),
('ReduceSum_4', {
'block': P.ReduceSum(keep_dims=True),
'desc_const': [0],
'desc_inputs': [[3, 2]],
'desc_bprop': [[1, 2]]}),
('ReduceSum_5', {
'block': P.ReduceSum(keep_dims=True),
'desc_inputs': [[2, 3, 4]],
'desc_bprop': [[1, 1, 1]]}),
('ReduceSum_6', {
'block': P.ReduceSum(),
'desc_inputs': [[2, 3, 4]],
'desc_bprop': [[1]]}),
('Sum_0', {
'block': P.ReduceSum(),
'desc_const': [(1,)],
'desc_inputs': [[3, 2]],
'desc_bprop': [[3]]}),
('Sum_1', {
'block': P.ReduceSum(keep_dims=True),
'desc_const': [(1,)],
'desc_inputs': [[3, 2]],
'desc_bprop': [[3, 1]]}),
('Sum_2', {
'block': P.ReduceSum(),
'desc_const': [(0, 1)],
'desc_inputs': [[3, 2]],
'desc_bprop': [[1]]}),
('Sum_3', {
'block': P.ReduceSum(),
'desc_const': [0],
'desc_inputs': [[3, 2]],
'desc_bprop': [[2]]}),
('Sum_4', {
'block': P.ReduceSum(keep_dims=True),
'desc_const': [0],
'desc_inputs': [[3, 2]],
'desc_bprop': [[1, 2]]}),
('Sum_5', {
'block': P.ReduceSum(keep_dims=True),
'desc_const': [()],
'desc_inputs': [[2, 3, 4]],
'desc_bprop': [[1, 1, 1]]}),
('Sum_6', {
'block': P.ReduceSum(),
'desc_const': [()],
'desc_inputs': [[2, 3, 4]],
'desc_bprop': [[1]]}),
('Sign', {
'block': P.Sign(),
'desc_inputs': [[3]],
'desc_bprop': [[3]]}),
('Round', {
'block': P.Round(),
'desc_inputs': [[3]],
2020-03-28 12:02:46 +08:00
'desc_bprop': [[3]]}),
('Atan2', {
'block': P.Atan2(),
'desc_inputs': [Tensor(np.array([0, 1]).astype(np.float32)),
Tensor(np.array([1, 1]).astype(np.float32))],
'desc_bprop': [[2]]})
]
test_case_nn_ops = [
('BiasAdd', {
'block': P.BiasAdd(),
'desc_inputs': [[1, 3, 3, 3], [3]],
'desc_bprop': [[1, 3, 3, 3]]}),
('BiasAddGrad', {
'block': G.BiasAddGrad(),
'desc_inputs': [[1, 3, 3, 3]],
'skip': ['backward']}),
('Gelu', {
'block': P.Gelu(),
'desc_inputs': [[1, 3, 4, 4]],
'desc_bprop': [[1, 3, 4, 4]]}),
('GeluGrad', {
'block': G.GeluGrad(),
'desc_inputs': [[2, 2], [2, 2], [2, 2]],
'desc_bprop': [[2, 2]],
'skip': ['backward']}),
('Tanh', {
'block': P.Tanh(),
'desc_inputs': [[1, 3, 4, 4]],
'desc_bprop': [[1, 3, 4, 4]]}),
('TanhGrad', {
'block': G.TanhGrad(),
'desc_inputs': [[1, 3, 4, 4], [1, 3, 4, 4]],
'desc_bprop': [[1, 3, 4, 4]],
'skip': ['backward']}),
('ReLU', {
'block': P.ReLU(),
'desc_inputs': [[1, 3, 4, 4]],
'desc_bprop': [[1, 3, 4, 4]]}),
('ReLU6', {
'block': P.ReLU6(),
'desc_inputs': [[1, 3, 4, 4]],
'desc_bprop': [[1, 3, 4, 4]]}),
('ReLUV2', {
'block': P.ReLUV2(),
'desc_inputs': [[1, 3, 4, 4]],
2020-04-23 15:42:11 +08:00
'desc_bprop': [[1, 3, 4, 4], ([1, 1, 4, 4, 2], {'dtype': np.uint8})]}),
('ReLUGrad', {
'block': G.ReluGrad(),
'desc_inputs': [[1, 3, 4, 4], [1, 3, 4, 4]],
'skip': ['backward']}),
('Elu', {
'block': P.Elu(),
'desc_inputs': [[2, 3, 4]],
'desc_bprop': [[2, 3, 4]]}),
('EluGrad', {
'block': G.EluGrad(),
'desc_inputs': [[2, 3, 4], [2, 3, 4]],
'desc_bprop': [[2, 3, 4]],
'skip': ['backward']}),
('Sigmoid', {
'block': P.Sigmoid(),
'desc_inputs': [[1, 3, 4, 4]],
'desc_bprop': [[1, 3, 4, 4]]}),
('MaxPool', {
'block': P.MaxPool(ksize=(2, 2), strides=(2, 2), padding="VALID"),
'desc_inputs': [[100, 3, 28, 28]],
'desc_bprop': [[100, 3, 14, 14]]}),
('MaxPoolGrad', {
'block': G.MaxPoolGrad(ksize=(2, 2), strides=(2, 2), padding="VALID"),
'desc_inputs': [[3, 4, 6, 6], [3, 4, 3, 3], [3, 4, 3, 3]],
'desc_bprop': [[3, 4, 6, 6]],
'skip': ['backward']}),
('AvgPool', {
'block': P.AvgPool(ksize=(2, 2), strides=(2, 2), padding="VALID"),
'desc_inputs': [[100, 3, 28, 28]],
'desc_bprop': [[100, 3, 14, 14]]}),
('AvgPoolGrad', {
'block': G.AvgPoolGrad(ksize=(2, 2), strides=(2, 2), padding="VALID"),
'desc_const': [(3, 4, 6, 6)],
'const_first': True,
'desc_inputs': [[3, 4, 6, 6]],
'desc_bprop': [[3, 4, 6, 6]],
'skip': ['backward']}),
('MaxPoolWithArgmax', {
2020-04-02 11:58:45 +08:00
'block': P.MaxPoolWithArgmax(ksize=2, strides=2),
'desc_inputs': [[128, 32, 32, 64]],
2020-04-23 15:42:11 +08:00
'desc_bprop': [[128, 32, 16, 32], ([128, 32, 4, 33], {'dtype': np.uint16})]}),
('SoftmaxCrossEntropyWithLogits', {
'block': P.SoftmaxCrossEntropyWithLogits(),
'desc_inputs': [[1, 10], [1, 10]],
'desc_bprop': [[1], [1, 10]],
'skip': ['backward_exec']}),
('Flatten', {
'block': P.Flatten(),
'desc_inputs': [[128, 32, 32, 64]],
'desc_bprop': [[128 * 32 * 8 * 16]]}),
('LogSoftmax', {
'block': P.LogSoftmax(),
'desc_inputs': [[64, 2]],
2020-04-23 15:42:11 +08:00
'desc_bprop': [[64, 2]]}),
('LogSoftmaxGrad', {
'block': G.LogSoftmaxGrad(),
'desc_inputs': [[16, 1234], [16, 1234]],
'desc_bprop': [[64, 2]],
'skip': ['backward']}),
('LayerNorm', {
'block': P.LayerNorm(),
'desc_inputs': [[2, 16], [16], [16]],
2020-04-23 15:42:11 +08:00
'desc_bprop': [[2, 16], [2, 1], [2, 1]]}),
('LayerNormGrad', {
'block': G.LayerNormGrad(),
'desc_inputs': [[2, 16], [2, 16], [2, 16], [2, 16], [16]],
'desc_bprop': [[2, 16], [16], [16]],
'skip': ['backward']}),
('FusedBatchNorm', {
'block': P.FusedBatchNorm(),
'desc_inputs': [[128, 64, 32, 64], [64], [64], [64], [64]],
'desc_bprop': [[128, 64, 32, 64], [64], [64], [64], [64]],
'skip': []}),
('FusedBatchNormGrad', {
'block': G.FusedBatchNormGrad(),
'desc_inputs': [[128, 64, 32, 64], [128, 64, 32, 64], [64], [64], [64]],
'desc_bprop': [[128, 64, 32, 64], [64], [64], [64], [64]],
'skip': ['backward']}),
('BatchNorm', {
'block': P.BatchNorm(),
'desc_inputs': [[128, 64, 32, 32], [64], [64], [64], [64]],
'desc_bprop': [[128, 64, 32, 32], [64], [64], [64], [64]],
'skip': []}),
('BatchNormGrad', {
'block': G.BatchNormGrad(),
2020-04-23 15:17:06 +08:00
'desc_inputs': [[128, 64, 32, 32], [128, 64, 32, 32], [64], [64], [64]],
'desc_bprop': [[128, 64, 32, 32], [64], [64], [64], [64]],
'skip': ['backward']}),
('TopK', {
'block': P.TopK(),
'desc_const': [5],
'desc_inputs': [[20, 20, 10]],
'desc_bprop': [[20, 20, 5]],
'skip': ['backward']}),
('GatherV2_0', {
'block': P.GatherV2(),
'desc_const': [0],
'desc_inputs': [[3, 1, 2], Tensor(np.array([0, 1]).astype(np.int32))],
'desc_bprop': [[2, 1, 2]]}),
('GatherV2_1', {
'block': P.GatherV2(),
'desc_const': [2],
'desc_inputs': [[3, 1, 3], Tensor(np.array([0, 1]).astype(np.int32))],
'desc_bprop': [[3, 1, 2]]}),
('GatherV2_2', {
'block': P.GatherV2(),
'desc_const': [0],
'desc_inputs': [[3, 1, 3], Tensor(np.array([[0, 1], [0, 1], [0, 1]]).astype(np.int32))],
'desc_bprop': [[3, 2, 1, 3]]}),
('GatherV2_3', {
'block': P.GatherV2(),
'desc_const': [2],
'desc_inputs': [[3, 1, 3], Tensor(np.array([[0, 1], [0, 1], [0, 1]]).astype(np.int32))],
'desc_bprop': [[3, 1, 3, 2]]}),
('GatherV2_4', {
'block': P.GatherV2(),
'desc_const': [1],
'desc_inputs': [[32, 5, 1024], Tensor(np.array([3]).astype(np.int32))],
'desc_bprop': [[32, 1, 1024]]}),
('GatherV2_5', {
'block': P.GatherV2(),
'desc_const': [-1],
'desc_inputs': [[3, 1, 3], Tensor(np.array([0, 1]).astype(np.int32))],
'desc_bprop': [[3, 1, 2]]}),
('GatherV2_6', {
'block': P.GatherV2(),
'desc_const': [0],
'desc_inputs': [[1152], Tensor(np.array(10).astype(np.int32))],
'desc_bprop': [Tensor(np.array(10).astype(np.float32))]}),
('UnsortedSegmentSum', {
'block': P.UnsortedSegmentSum(),
'desc_const': [1280],
'desc_inputs': [[1280,1024], Tensor(np.ones(1280).astype(np.int32))],
'desc_bprop': [[8192,1024]],
'skip': ['backward']}),
('UnsortedSegmentSum_1', {
'block': P.UnsortedSegmentSum(),
'desc_const': [4],
'desc_inputs': [[3, 2, 1, 3], Tensor(np.array([[0, 1], [0, 1], [0, 1]]).astype(np.int32))],
'desc_bprop': [[4, 1, 3]],
'skip': ['backward']}),
('DropoutGenMask', {
'block': P.DropoutGenMask(),
'desc_const': [(2, 2), Tensor(0.5, mstype.float32)],
'desc_inputs': [],
'desc_bprop': [Tensor(np.ones(1).astype(np.int8))],
'skip': ['backward']}),
('DropoutDoMask', {
'block': P.DropoutDoMask(),
'desc_const': [Tensor(0.5)],
'desc_inputs': [[64, 12, 128, 128], Tensor(np.ones(1572864).astype(np.uint8))],
'desc_bprop': [[64, 12, 128, 128]]}),
('Dropout', {
'block': nn.Dropout(0.5),
'desc_inputs': [[64, 12, 128, 128]],
'desc_bprop': [[64, 12, 128, 128]]}),
('ReduceMean0', {
'block': P.ReduceMean(),
'desc_const': [(2,)],
'desc_inputs': [[3, 2, 2]],
'desc_bprop': [[3, 2]]}),
('ReduceMean1', {
'block': P.ReduceMean(),
'desc_const': [2],
'desc_inputs': [[3, 2, 2]],
'desc_bprop': [[3, 2]]}),
('All', {
'block': P.ReduceAll(),
'desc_const': [(1,)],
'desc_inputs': [Tensor(np.ones([3, 2]).astype(np.bool_))],
'desc_bprop': [[3]],
'skip': ['backward']}),
('DescConst', {
'block': Tensor(np.array([2], np.float32)),
'desc_inputs': [],
'desc_bprop': [[1]],
'skip': ['backward'],
'add_fake_input': True}),
('Fill', {
'block': P.Fill(),
'desc_const': [mstype.float32, (2, 3), 1.0],
'desc_inputs': [],
'desc_bprop': [[2, 3]],
'skip': ['backward'],
'add_fake_input': True}),
('OnesLike', {
'block': P.OnesLike(),
'desc_inputs': [Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32))],
'desc_bprop': [Tensor(np.array([[1, 1], [1, 1]]).astype(np.int32))]
}),
('ZerosLike', {
'block': P.ZerosLike(),
'desc_inputs': [Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32))],
'desc_bprop': [Tensor(np.array([[1, 1], [1, 1]]).astype(np.int32))]
}),
('Softmax', {
'block': P.Softmax(),
'desc_inputs': [[5, 5]],
'desc_bprop': [[5, 5]]}),
('DepthwiseConv2dNative_1', {
'block': P.DepthwiseConv2dNative(3, (3, 3), pad_mode="pad", pad=1, stride=2),
2020-04-24 17:24:23 +08:00
'desc_inputs': [[10, 32, 32, 32], [1, 32, 3, 3]],
'desc_bprop': [[10, 32, 16, 16]]}),
('DepthwiseConv2dNative_2', {
'block': P.DepthwiseConv2dNative(1, (3, 3), pad_mode="same", pad=0, stride=1),
'desc_inputs': [[2592, 2048, 4, 4], [1, 2048, 3, 3]],
2020-04-24 17:24:23 +08:00
'desc_bprop': [[2592, 2048, 4, 4]]}),
('SigmoidCrossEntropyWithLogits', {
'block': P.SigmoidCrossEntropyWithLogits(),
'desc_inputs': [[128, 10], [128, 10]],
'desc_bprop': [[128, 10]]}),
('Pad', {
'block': P.Pad(((1, 2), (2, 3))),
'desc_inputs': [[7, 7]],
'desc_bprop': [[10, 12]]}),
('BinaryCrossEntropy', {
'block': P.BinaryCrossEntropy(),
'desc_inputs': [[1, 2, 3], [1, 2, 3], [1, 2, 3]],
'desc_bprop': []}),
('SparseApplyAdagrad', {
'block': P.SparseApplyAdagrad(0.5),
'desc_inputs': [[3, 3], [3, 3], [3, 3], Tensor(np.ones((3,), np.int32))],
'desc_bprop': [[3, 3], [3, 3]],
'skip': ['backward']}),
('Flatten_1', {
'block': NetForFlatten(),
'desc_inputs': [Tensor(np.ones([2, 3, 4]).astype(np.int32)), Tensor(np.ones([2, 12]).astype(np.int32))],
'desc_bprop': [Tensor(np.ones([2, 12]).astype(np.int32))],
'skip': ['backward']}),
('Flatten_2', {
'block': NetForFlatten(),
'desc_inputs': [Tensor(np.ones([8]).astype(np.int32)), Tensor(np.ones([8, 3]).astype(np.int32))],
'desc_bprop': [Tensor(np.ones([8, 3]).astype(np.int32))],
'skip': ['backward']}),
('ArgmaxNet', {
'block': ArgmaxNet(),
'desc_inputs': [Tensor(np.array([[128, 32, 32, 64],[128, 32, 32, 64]]).astype(np.float16))],
'desc_bprop': [Tensor(np.array([[128, 32, 32, 64],[128, 32, 32, 64]]).astype(np.float16))],
'skip': ['backward']}),
('ArgminNet', {
'block': ArgminNet(),
'desc_inputs': [Tensor(np.array([[128, 32, 32, 64],[128, 32, 32, 64]]).astype(np.float16))],
'desc_bprop': [Tensor(np.array([[128, 32, 32, 64],[128, 32, 32, 64]]).astype(np.float16))],
'skip': ['backward']}),
('CumSumNet', {
'block': CumSumNet(),
'desc_const': [0],
'desc_inputs': [Tensor(np.array([[3, 4, 6, 10],[1, 6, 7, 9],[4, 3, 8, 7],[1, 3, 7, 9]]).astype(np.float16))],
'desc_bprop': [Tensor(np.array([[3, 4, 6, 10],[1, 6, 7, 9],[4, 3, 8, 7],[1, 3, 7, 9]]).astype(np.float16))]}),
('OneHot', {
'block': P.OneHot(),
'desc_const': [3, Tensor(1.0, mstype.float32), Tensor(0.0, mstype.float32)],
'desc_inputs': [Tensor(np.array([64]).astype(np.int32))],
2020-04-23 15:42:11 +08:00
'desc_bprop': [[1, 3]]}),
('ReduceProd_0', {
'block': P.ReduceProd(),
'desc_const': [0],
'desc_inputs': [[3, 2]],
'desc_bprop': [[2]]}),
('ReduceProd_1', {
'block': P.ReduceProd(keep_dims=True),
'desc_const': [0],
'desc_inputs': [[3, 2]],
'desc_bprop': [[1, 2]]}),
('CumProd', {
'block': P.CumProd(),
'desc_const': [0],
'desc_inputs': [[3, 2]],
'desc_bprop': [[3, 2]]}),
('ApplyFtrl', {
'block': P.ApplyFtrl(),
'desc_const': [0.001, 0.0, 0.0, -0.5],
'desc_inputs': [[3, 3], [3, 3], [3, 3], [3, 3]],
'desc_bprop': [3, 3],
'skip': ['backward']}),
2020-03-31 09:14:08 +08:00
('ApplyRMSProp', {
'block': P.ApplyRMSProp(),
'desc_const': [0.9, 0.0, 1e-10, 0.001],
'desc_inputs': [[3, 3], [3, 3], [3, 3], [3, 3]],
'desc_bprop': [3, 3],
'skip': ['backward']}),
('ApplyCenteredRMSProp', {
'block': P.ApplyCenteredRMSProp(),
'desc_const': [0.9, 0.0, 1e-10, 0.001],
'desc_inputs': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3]],
'desc_bprop': [3, 3],
'skip': ['backward']}),
2020-04-17 16:50:53 +08:00
('L2Loss_1', {
'block': P.L2Loss(),
'desc_inputs': [Tensor(np.array([1, 2, 3, 4]), mstype.float16)],
'desc_bprop': []}),
('L2Loss_2', {
'block': P.L2Loss(),
'desc_inputs': [Tensor(np.array([[1, 1], [2, 2], [3, 3], [4, 4]]), mstype.float16)],
'desc_bprop': []}),
]
test_case_array_ops = [
('SpaceToDepth', {
'block': P.SpaceToDepth(2),
'desc_inputs': [[1, 3, 2, 2]],
'desc_bprop': [[1, 12, 1, 1]]}),
('DepthToSpace', {
'block': P.DepthToSpace(2),
'desc_inputs': [[1, 12, 1, 1]],
'desc_bprop': [[1, 3, 2, 2]]}),
('Split', {
'block': P.Split(1, 2),
'desc_inputs': [Tensor(np.array([[1, 1, 1, 1], [2, 2, 2, 2]]))],
'skip': ['backward']}),
('Argmax', {
'block': P.Argmax(),
'desc_inputs': [[128, 32, 32, 64]],
'desc_bprop': [0],
'skip': ['backward']}),
('Argmin', {
'block': P.Argmin(),
'desc_inputs': [[128, 32, 32, 64]],
'desc_bprop': [1],
'skip': ['backward']}),
('ArgMaxWithValue', {
'block': P.ArgMaxWithValue(),
'desc_inputs': [[128, 32, 32, 64]],
'desc_bprop': [[1], [1]],
'skip': ['backward']}),
('ArgMinWithValue', {
'block': P.ArgMinWithValue(),
'desc_inputs': [[128, 32, 32, 64]],
'desc_bprop': [[1], [1]],
'skip': ['backward']}),
('Transpose_dim3', {
'block': P.Transpose(),
'desc_const': [(0, 2, 1)],
'desc_inputs': [[1, 2, 3]],
'desc_bprop': [[1, 3, 2]]}),
('Transpose_dim4', {
'block': P.Transpose(),
'desc_const': [(0, 1, 2, 3)],
'desc_inputs': [[1, 2, 3, 4]],
'desc_bprop': [[1, 2, 4, 3]]}),
('AddN', {
'block': NetForTupleInput(P.AddN()),
'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5]],
'desc_bprop': [[2, 3, 3, 5]],
'skip': ['backward']}),
('Shape', {
'block': P.Shape(),
'desc_inputs': [[3, 3, 2, 2]],
'skip': ['backward']}),
('Reshape', {
'block': P.Reshape(),
'desc_const': [(64,)],
'desc_inputs': [[64, 1]],
'desc_bprop': [[64]]}),
('Cast', {
'block': P.Cast(),
'desc_const': [mstype.int32],
'desc_inputs': [[2, 3, 4, 5]],
2020-04-23 15:42:11 +08:00
'desc_bprop': [Tensor(np.ones((2, 3, 4, 5)).astype(np.int32))]}),
('ExpandDims', {
'block': P.ExpandDims(),
'desc_const': [0],
'desc_inputs': [[2, 2]],
'desc_bprop': [[1, 2, 2]]}),
('ExpandDims_1', {
'block': P.ExpandDims(),
'desc_const': [-1],
'desc_inputs': [[2, 2]],
'desc_bprop': [[2, 2, 1]]}),
('Squeeze', {
'block': P.Squeeze(2),
'desc_inputs': [[3, 2, 1]],
'desc_bprop': [[3, 2]]}),
('Squeeze_0', {
'block': P.Squeeze(),
'desc_inputs': [[3, 1, 2, 1]],
'desc_bprop': [[3, 2]]}),
('Squeeze_1', {
'block': P.Squeeze(),
'desc_inputs': [[1, 1, 1, 1]],
'desc_bprop': [1.0],
'skip': ['backward']}),
('Squeeze_2', {
'block': P.Squeeze((2, 3)),
'desc_inputs': [[3, 2, 1, 1]],
'desc_bprop': [[3, 2]]}),
('Size', {
'block': P.Size(),
'desc_inputs': [[2, 3, 5]],
'skip': ['backward']}),
('Tile_0', {
'block': P.Tile(),
'desc_const': [(1, 2)],
'desc_inputs': [[64, 1]],
'desc_bprop': [[64, 2]]}),
('Tile_1', {
'block': P.Tile(),
'desc_const': [(1, 1)],
'desc_inputs': [[64, 1]],
'desc_bprop': [[64, 1]]}),
('Tile_2', {
'block': P.Tile(),
'desc_const': [(2, 1, 1, 2)],
'desc_inputs': [[2, 2, 2]],
'desc_bprop': [[2, 2, 2, 4]]}),
('ConcatV2_0', {
'block': P.Concat(),
'desc_inputs': [
(Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32)),
Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32)))],
2020-04-23 15:42:11 +08:00
'desc_bprop': [([4, 2], {'dtype': np.int32})]}),
('ConcatV2_1', {
'block': P.Concat(axis=2),
'desc_inputs': [(Tensor(np.array([[[0, 1, 2]], [[2, 1, 2]]]).astype(np.int32)),
Tensor(np.array([[[0, 1]], [[2, 1]]]).astype(np.int32)))],
2020-04-23 15:42:11 +08:00
'desc_bprop': [([2, 1, 5], {'dtype': np.int32})]}),
('ConcatV2_2', {
'block': NetForConcat(),
'desc_inputs': [[2, 2]],
'desc_bprop': [[4, 2]]}),
('ConcatV2_3', {
'block': NetForConcat1(),
'desc_inputs': [[2, 2], [2, 2]],
'desc_bprop': [[4, 2]]}),
('ConcatV2_4', {
'block': P.Concat(axis=0),
'desc_inputs': [
(Tensor(np.ones((3, 2, 3), np.float32)),
Tensor(np.ones((5, 2, 3), np.float32)),
Tensor(np.ones((6, 2, 3), np.float32)))],
'desc_bprop': [[14, 2, 3]]}),
('ConcatV2_5', {
'block': P.Concat(axis=-1),
'desc_inputs': [(Tensor(np.array([1], np.float32)),
Tensor(np.array([1], np.float32)),
Tensor(np.array([1], np.float32)))],
'desc_bprop': [[3,]]}),
('Pack_0', {
'block': NetForPackInput(P.Pack()),
2020-04-06 10:22:47 +08:00
'desc_inputs':[[2, 2], [2, 2], [2, 2]],
'desc_bprop':[[3, 2, 2]],
}),
('Pack_1', {
'block': NetForPackInput(P.Pack(axis=-2)),
2020-04-06 10:22:47 +08:00
'desc_inputs':[[3, 2, 3], [3, 2, 3], [3, 2, 3]],
'desc_bprop':[[3, 2, 3, 3]],
}),
('Pack_2', {
'block': NetForPackInput(P.Pack()),
2020-04-06 10:22:47 +08:00
'desc_inputs':[[128, 128], [128, 128]],
'desc_bprop':[[2, 128, 128]],
}),
('Unpack_0', {
'block': NetForUnpackInput(P.Unpack(axis=0)),
2020-04-06 10:22:47 +08:00
'desc_inputs':[[2, 4]],
'desc_bprop':[[4], [4]],
}),
('Unpack_1', {
'block': NetForUnpackInput(P.Unpack(axis=-1)),
2020-04-06 10:22:47 +08:00
'desc_inputs':[Tensor(np.array([[1, 1, 1]], np.float32))],
'desc_bprop':[[1], [1], [1]],
}),
('Diag_1', {
2020-03-31 09:34:09 +08:00
'block': P.Diag(),
'desc_inputs': [[4]],
'desc_bprop': [[4, 4]],
}),
('Diag_2', {
'block': P.Diag(),
'desc_inputs': [[4, 4]],
'desc_bprop': [[4, 4, 4, 4]],
}),
('DiagPart_1', {
2020-03-31 09:34:09 +08:00
'block': P.DiagPart(),
'desc_inputs': [[4, 4]],
'desc_bprop': [[4]],
}),
('DiagPart_2', {
'block': P.DiagPart(),
'desc_inputs': [[4, 4, 4, 4]],
'desc_bprop': [[4, 4]],
}),
('SpaceToBatch_1', {
'block': P.SpaceToBatch(2, [[0, 0], [0, 0]]),
'desc_inputs': [[1, 3, 2, 2]],
'desc_bprop': [[4, 3, 1, 1]],
}),
('SpaceToBatch_2', {
'block': P.SpaceToBatch(2, [[1, 1], [0, 4]]),
'desc_inputs': [[1, 3, 2, 2]],
2020-04-23 15:42:11 +08:00
'desc_bprop': [[4, 3, 2, 3]],
}),
('BatchToSpace_1', {
'block': P.BatchToSpace(2, [[0, 0], [0, 0]]),
'desc_inputs': [[4, 3, 1, 1]],
'desc_bprop': [[1, 3, 2, 2]],
}),
('BatchToSpace_2', {
'block': P.BatchToSpace(2, [[0, 0], [0, 1]]),
'desc_inputs': [[4, 3, 1, 1]],
'desc_bprop': [[1, 3, 2, 1]],
}),
]
test_case_other_ops = [
('ScalarLog', {
'block': F.scalar_log,
'desc_const': [0.0],
'desc_inputs': [],
'desc_bprop': [1],
'skip': ['backward']}),
('BoundingBoxEncode', {
'block': P.BoundingBoxEncode(means=(0.0, 0.0, 0.0, 0.0), stds=(1.0, 1.0, 1.0, 1.0)),
'desc_inputs': [[256, 4], [256, 4]],
'desc_bprop': [[256, 4]],
'skip': ['backward']}),
('BoundingBoxDecode', {
'block': P.BoundingBoxDecode(means=(0.0, 0.0, 0.0, 0.0), stds=(1.0, 1.0, 1.0, 1.0), max_shape=(768, 1280)),
'desc_inputs': [[256, 4], [256, 4]],
'desc_bprop': [[256, 4]],
'skip': ['backward']}),
('GatherNd', {
'block': P.GatherNd(),
'desc_inputs': (Tensor(np.ones((1, 3, 6, 6), np.float32)),
Tensor(np.ones((2, 4), np.int32))),
'desc_bprop': [[2]]}),
('ScatterNd', {
'block': P.ScatterNd(),
'desc_const': [(3, 3)],
'desc_inputs': (Tensor(np.ones((2, 2), np.int32)),
Tensor(np.ones((2,), np.int32))),
2020-04-23 15:42:11 +08:00
'desc_bprop': [([3, 3], {'dtype': np.int32})]}),
('SmoothL1Loss', {
'block': P.SmoothL1Loss(),
'desc_inputs': [[256, 4], [256, 4]],
'desc_bprop': [[256, 4]]}),
('IOU', {
'block': P.IOU(),
'desc_inputs': [Tensor(np.ones((256, 4), np.float16)), Tensor(np.ones((128, 4), np.float16))],
'desc_bprop': [[128, 256]]}),
('Summary', {
'block': SummaryNet(),
'desc_inputs': [Tensor(np.array([1.1]).astype(np.float32)),
Tensor(np.array([1.2]).astype(np.float32))],
'skip': ['backward']}),
('ConfusionMulGrad_1', {
'block': P.ConfusionMulGrad(axis = [0], keep_dims = False),
'desc_inputs': [[3, 2], [3, 2], [3, 2]],
'desc_bprop': [[3, 2], [2]],
'skip': ['backward']}),
('ConfusionMulGrad_2', {
'block': P.ConfusionMulGrad(axis = [0], keep_dims = True),
'desc_inputs': [[3, 2], [3, 2], [3, 2]],
'desc_bprop': [[3, 2], [1, 2]],
'skip': ['backward']}),
('ConfusionMulGrad_3', {
'block': P.ConfusionMulGrad(axis = (), keep_dims = True),
'desc_inputs': [[2, 3, 4], [2, 3, 4], [2, 3, 4]],
'desc_bprop': [[2, 3, 4], [1, 1, 1]],
'skip': ['backward']}),
('HistogramSummary', {
'block': HistogramSummaryNet(),
'desc_inputs': [Tensor(np.array([1.1]).astype(np.float32)),
Tensor(np.array([1.2]).astype(np.float32))],
'skip': ['backward']}),
]
test_case_lists = [test_case_nn_ops, test_case_math_ops, test_case_array_ops, test_case_other_ops]
test_case = functools.reduce(lambda x, y: x + y, test_case_lists)
# use -k to select certain testcast
# pytest tests/python/ops/test_ops.py::test_backward -k LayerNorm
test_exec_case = test_case
test_backward_exec_case = filter(lambda x: 'skip' not in x[1] or
'backward' not in x[1]['skip'], test_case)
import mindspore.context as context
@non_graph_engine
@mindspore_test(pipeline_for_compile_forward_ge_graph_for_case_by_case_config)
def test_exec():
context.set_context(mode=context.GRAPH_MODE, save_graphs=True)
return test_exec_case
@mindspore_test(pipeline_for_compile_grad_ge_graph_for_case_by_case_config)
def test_backward_exec():
context.set_context(mode=context.GRAPH_MODE)
return test_backward_exec_case
raise_set = [
('Cast_Error', {
'block': (P.Cast(), {'exception': TypeError}),
'desc_const': [mstype.int32],
'desc_inputs': ['wrong input'],
'desc_bprop': [Tensor(np.ones((2, 3, 3, 5)).astype(np.int32))]}),
('Maximum_Error', {
'block': (P.Maximum(), {'exception': TypeError}),
'desc_const': [(1, 2, 3)],
'desc_inputs': [[2, 3, 3, 5]],
'desc_bprop': [[2, 3, 3, 5]]}),
('Shape_error', {
'block': (P.Shape(), {'exception': TypeError}),
'desc_inputs': [(64, 1)],
'desc_bprop': [[64]]}),
('Flatten_Error', {
'block': (NetForFlatten0D(), {'exception': ValueError}),
'desc_inputs': [Tensor(np.array(0).astype(np.int32))],
'desc_bprop': [Tensor(np.array(0).astype(np.int32))]}),
('ScatterNdUpdate', {
'block': (P.ScatterNdUpdate(), {'exception': TypeError}),
'desc_inputs': (Tensor(np.ones((2, 3), np.float32)),
Tensor(np.ones((2, 2), np.int32)),
Tensor(np.ones((2,), np.float32))),
'desc_bprop': [[2, 3]]}),
('Pack', {
'block': (NetForPackInput(P.Pack()), {'exception': ValueError}),
'desc_inputs':[[2, 2]],
'desc_bprop':[[1, 2, 2]]}),
('PReLU', {
'block': (P.PReLU(), {'exception': ValueError}),
'desc_inputs':[[2], [1]],
'desc_bprop':[[1]]}),
]
@mindspore_test(pipeline_for_compile_forward_ge_graph_for_case_by_case_config_exception)
def test_check_exception():
return raise_set