mindspore/tests/ut/python/parallel/test_tile.py

163 lines
5.5 KiB
Python
Raw Normal View History

2020-07-24 17:39:50 +08:00
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import mindspore as ms
from mindspore import context, Tensor, Parameter
from mindspore.common.api import _cell_graph_executor
2020-07-24 17:39:50 +08:00
from mindspore.nn import Cell, TrainOneStepCell, Momentum
from mindspore.ops import operations as P
class Net(Cell):
def __init__(self, weight, weight2, strategy1=None, strategy2=None, is_parameter=True):
super().__init__()
2020-09-10 15:30:19 +08:00
self.mul = P.Mul().shard(strategy1)
self.tile = P.Tile().shard(strategy2)
2020-07-24 17:39:50 +08:00
if is_parameter:
self.weight = Parameter(weight, "w1")
else:
self.weight = weight
self.mul2 = P.Mul()
self.weight2 = Parameter(weight2, "w2")
def construct(self, x, b):
out = self.tile(self.weight, (8, 4, 2))
out = self.mul(x, out)
out = self.mul2(out, self.weight2)
return out
class Net2(Cell):
def __init__(self, weight2, strategy1=None, strategy2=None):
super().__init__()
2020-09-10 15:30:19 +08:00
self.mul = P.Mul().shard(strategy1)
self.tile = P.Tile().shard(strategy2)
2020-07-24 17:39:50 +08:00
self.weight2 = Parameter(weight2, "w2")
def construct(self, x, b):
out = self.mul(x, self.weight2)
out = self.tile(out, (8, 8, 4, 2))
return out
class Net3(Cell):
def __init__(self, weight, strategy1=None, strategy2=None, is_parameter=True):
super().__init__()
self.mul = P.Mul().shard(strategy1)
self.tile = P.Tile().shard(strategy2)
if is_parameter:
self.weight = Parameter(weight, "w1")
else:
self.weight = weight
self.mul2 = P.Mul()
def construct(self, x, b):
out = self.tile(self.weight, (8, 1, 1))
out = self.mul(x, out)
return out
2020-07-24 17:39:50 +08:00
_x = Tensor(np.ones([128, 64, 32]), dtype=ms.float32)
_x1 = Tensor(np.ones([128, 16, 16]), dtype=ms.float32)
2020-07-24 17:39:50 +08:00
_w1 = Tensor(np.ones([16, 16, 16]), dtype=ms.float32)
_w2 = Tensor(np.ones([128, 64, 32]), dtype=ms.float32)
_w3 = Tensor(np.ones([128, 16, 16]), dtype=ms.float32)
2020-07-24 17:39:50 +08:00
_b = Tensor(np.ones([128, 64, 32]), dtype=ms.float32)
def compile_net(net, x=_b, b=_b):
2020-07-24 17:39:50 +08:00
optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
train_net = TrainOneStepCell(net, optimizer)
train_net.set_auto_parallel()
train_net.set_train()
_cell_graph_executor.compile(train_net, x, b)
2020-07-24 17:39:50 +08:00
context.reset_auto_parallel_context()
def test_tile_parameter():
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
strategy1 = ((2, 2, 2), (2, 2, 2))
strategy2 = ((2, 2, 2),)
net = Net(_w1, _w2, strategy1, strategy2, is_parameter=True)
compile_net(net)
def test_tile_parameter_no_full_split():
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
strategy1 = ((2, 2, 2), (2, 2, 2))
strategy2 = ((2, 2, 1),)
net = Net(_w1, _w2, strategy1, strategy2, is_parameter=True)
compile_net(net)
def test_tile_tensor():
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
strategy1 = ((2, 2, 2), (2, 2, 2))
strategy2 = ((2, 2, 2),)
net = Net(_w1, _w2, strategy1, strategy2, is_parameter=False)
compile_net(net)
def test_tile_tensor_no_full_split():
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
strategy1 = ((2, 2, 2), (2, 2, 2))
strategy2 = ((2, 2, 1),)
net = Net(_w1, _w2, strategy1, strategy2, is_parameter=False)
compile_net(net)
def test_tile_tensor_no_full_split2():
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
strategy1 = ((2, 2, 1), (2, 2, 1))
strategy2 = ((2, 2, 1),)
net = Net3(_w1, strategy1, strategy2)
compile_net(net, _x1, _b)
2020-07-24 17:39:50 +08:00
def test_tile_output():
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
strategy1 = ((2, 2, 2), (2, 2, 2))
strategy2 = ((1, 2, 2, 2),)
net = Net2(_w2, strategy1, strategy2)
compile_net(net)
2020-07-24 17:39:50 +08:00
def test_tile_output_no_full_split():
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
strategy1 = ((2, 2, 2), (2, 2, 2))
strategy2 = ((1, 2, 1, 2),)
net = Net2(_w2, strategy1, strategy2)
compile_net(net)
def test_tile_no_strategy():
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
strategy1 = ((2, 2, 2), (2, 2, 2))
strategy2 = None
net = Net2(_w2, strategy1, strategy2)
compile_net(net)
2020-07-24 17:39:50 +08:00
def test_tile_auto_parallel():
context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=8, global_rank=0)
net = Net2(_w2)
compile_net(net)
def test_tile_auto_parallel_2():
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
net = Net3(_w1)
compile_net(net, _x1, _b)