mindspore/tests/ut/python/parallel/test_split_grad_sens.py

181 lines
5.9 KiB
Python
Raw Normal View History

# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
2020-05-18 16:42:35 +08:00
import mindspore as ms
import mindspore.common.dtype as mstype
import mindspore.nn as nn
from mindspore import Tensor
2020-05-18 16:42:35 +08:00
from mindspore import context
from mindspore.common.api import _cell_graph_executor
from mindspore.ops import composite as C
2020-05-18 16:42:35 +08:00
from mindspore.ops import operations as P
2020-08-25 20:16:08 +08:00
grad_all = C.GradOperation(get_all=True)
grad_all_with_sens = C.GradOperation(get_all=True, sens_param=True)
2020-08-24 10:22:10 +08:00
class GradWrap(nn.Cell):
def __init__(self, network):
super(GradWrap, self).__init__()
self.network = network
def construct(self, x, y, b, sens):
2020-08-24 10:22:10 +08:00
return grad_all_with_sens(self.network)(x, y, b, sens)
class GradWrap2(nn.Cell):
def __init__(self, network):
super(GradWrap2, self).__init__()
self.network = network
def construct(self, x, y, b):
loss = self.network(x, y, b)
sens = P.Fill()(mstype.float32, P.Shape()(loss), 1.0)
2020-08-24 10:22:10 +08:00
return grad_all_with_sens(self.network)(x, y, b, sens)
class GradWrap3(nn.Cell):
def __init__(self, network):
super(GradWrap3, self).__init__()
self.network = network
def construct(self, x, y, bias):
2020-08-24 10:22:10 +08:00
return grad_all(self.network)(x, y, bias)
2020-05-25 15:24:25 +08:00
class GradWrap4(nn.Cell):
def __init__(self, network):
super(GradWrap4, self).__init__()
self.network = network
def construct(self, x, y):
2020-08-24 10:22:10 +08:00
return grad_all(self.network)(x, y)
2020-05-22 09:13:09 +08:00
def compile_net(net, x, y, b):
2020-05-07 10:40:59 +08:00
net.set_auto_parallel()
net.set_train()
_cell_graph_executor.compile(net, x, y, b)
2020-05-07 10:40:59 +08:00
2020-05-25 15:24:25 +08:00
def compile_net_no_bias(net, x, y):
net.set_auto_parallel()
net.set_train()
_cell_graph_executor.compile(net, x, y)
2020-05-07 10:40:59 +08:00
def test_no_grad():
class Net(nn.Cell):
def __init__(self, strategy1, strategy2):
super().__init__()
2020-09-10 15:30:19 +08:00
self.matmul1 = P.MatMul().shard(strategy1)
self.matmul2 = P.MatMul().shard(strategy2)
def construct(self, x, y, b):
out = self.matmul1(x, y)
out = self.matmul2(out, b)
return out
context.set_auto_parallel_context(device_num=8, global_rank=0)
2020-05-18 10:31:46 +08:00
strategy1 = ((4, 2), (2, 1))
strategy2 = ((2, 4), (4, 1))
net = Net(strategy1, strategy2)
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
x = Tensor(np.ones([128, 32]), dtype=ms.float32)
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
b = Tensor(np.ones([64, 64]), dtype=ms.float32)
2020-05-22 09:13:09 +08:00
compile_net(net, x, y, b)
def test_grad_sens_parameter_type():
class Net(nn.Cell):
def __init__(self, strategy1, strategy2):
super().__init__()
2020-09-10 15:30:19 +08:00
self.matmul1 = P.MatMul().shard(strategy1)
self.matmul2 = P.MatMul().shard(strategy2)
def construct(self, x, y, b):
out = self.matmul1(x, y)
out = self.matmul2(out, b)
return out
2020-08-26 14:32:11 +08:00
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=64, global_rank=0)
strategy1 = ((8, 1), (1, 8))
strategy2 = ((8, 8), (8, 1))
net = GradWrap(Net(strategy1, strategy2))
x = Tensor(np.ones([128, 32]), dtype=ms.float32)
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
b = Tensor(np.ones([64, 64]), dtype=ms.float32)
sens = Tensor(np.ones([128, 64]), dtype=ms.float32)
2020-05-07 10:40:59 +08:00
net.set_auto_parallel()
net.set_train()
_cell_graph_executor.compile(net, x, y, b, sens, phase='train', auto_parallel_mode=True)
x_layout = ([8, 8], [1, -1], [16, 32], 0, True, '')
y_layout = ([8, 8], [-1, 0], [32, 8], 0, True, '')
b_layout = ([8, 8], [0, -1], [8, 64], 0, True, '')
sens_layout = ([8, 8], [1, -1], [16, 64], 0, True, '')
expect_dict = {'x': x_layout, 'y': y_layout, 'b': b_layout, 'sens': sens_layout}
2020-08-26 14:32:11 +08:00
assert net.parameter_layout_dict == expect_dict
def test_grad_sens_tensor_type():
class Net(nn.Cell):
def __init__(self, strategy1, strategy2):
super().__init__()
2020-09-10 15:30:19 +08:00
self.matmul1 = P.MatMul().shard(strategy1)
self.matmul2 = P.MatMul().shard(strategy2)
def construct(self, x, y, b):
out = self.matmul1(x, y)
out = self.matmul2(out, b)
return out
context.set_auto_parallel_context(device_num=8, global_rank=0)
2020-05-18 10:31:46 +08:00
strategy1 = ((4, 2), (2, 1))
strategy2 = ((2, 4), (4, 1))
net = GradWrap2(Net(strategy1, strategy2))
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
x = Tensor(np.ones([128, 32]), dtype=ms.float32)
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
b = Tensor(np.ones([64, 64]), dtype=ms.float32)
2020-05-22 09:13:09 +08:00
compile_net(net, x, y, b)
def test_grad_sens_scalar_broadcast():
class Net(nn.Cell):
def __init__(self, strategy0, strategy1):
super().__init__()
2020-09-10 15:30:19 +08:00
self.fc_nobias = P.MatMul(transpose_b=True).shard(strategy0)
self.reduce_sum = P.ReduceSum(keep_dims=False).shard(strategy1)
2020-05-25 15:24:25 +08:00
def construct(self, x, y):
out = self.fc_nobias(x, y)
2020-05-18 10:31:46 +08:00
out = self.reduce_sum(out, (0, 1))
return out
context.set_auto_parallel_context(device_num=16, global_rank=0)
strategy0 = ((4, 1), (4, 1))
2020-05-18 10:31:46 +08:00
strategy1 = ((4, 1),)
2020-05-25 15:24:25 +08:00
net = GradWrap4(Net(strategy0, strategy1))
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
y = Tensor(np.ones([64, 32]), dtype=ms.float32)
2020-05-25 15:24:25 +08:00
compile_net_no_bias(net, x, y)