mindspore/tests/ut/python/parallel/test_sparse_gather_v2.py

225 lines
7.9 KiB
Python
Raw Normal View History

2020-06-11 20:21:28 +08:00
# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import mindspore as ms
import mindspore.nn as nn
from mindspore import Tensor
from mindspore import context
from mindspore.common.api import _cell_graph_executor
2020-06-11 20:21:28 +08:00
from mindspore.ops import composite as C
from mindspore.ops import operations as P
from tests.ut.python.ops.test_math_ops import VirtualLoss
2020-08-25 20:16:08 +08:00
grad_all = C.GradOperation(get_all=True)
2020-08-24 10:22:10 +08:00
2020-06-11 20:21:28 +08:00
class NetWithLoss(nn.Cell):
def __init__(self, network):
super(NetWithLoss, self).__init__()
self.loss = VirtualLoss()
self.network = network
def construct(self, x, y):
predict = self.network(x, y)
return self.loss(predict)
class GradWrap(nn.Cell):
def __init__(self, network):
super(GradWrap, self).__init__()
self.network = network
def construct(self, x, y):
2020-08-24 10:22:10 +08:00
return grad_all(self.network)(x, y)
2020-06-11 20:21:28 +08:00
class Net(nn.Cell):
def __init__(self, axis=0, strategy1=None, strategy2=None, shape=None, target=""):
super().__init__()
if shape is None:
shape = [64, 64]
2020-09-10 15:30:19 +08:00
self.gatherv2 = P.SparseGatherV2().shard(strategy1).add_prim_attr("primitive_target", target)
self.mul = P.Mul().shard(strategy2)
2020-06-11 20:21:28 +08:00
self.index = Tensor(np.ones(shape), dtype=ms.int32)
self.axis = axis
def construct(self, x, y):
out = self.gatherv2(x, self.index, self.axis)
out = self.mul(out, y)
return out
def test_gatherv2_semi_auto0():
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
strategy1 = ((8, 1), (1, 1))
strategy2 = ((4, 2, 1), (4, 2, 1))
net = GradWrap(NetWithLoss(Net(0, strategy1, strategy2)))
net.set_auto_parallel()
x = Tensor(np.ones([64, 64]), dtype=ms.float32)
y = Tensor(np.ones([64, 64, 64]), dtype=ms.float32)
net.set_train()
_cell_graph_executor.compile(net, x, y)
2020-06-11 20:21:28 +08:00
def test_gatherv2_semi_auto1():
"""
Feature: distribute operator SparseGatherV2 in auto parallel.
Description: gather net with strategy in semi auto parallel, gather axis is 1.
Expectation: compile done without error.
"""
2020-06-11 20:21:28 +08:00
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
strategy1 = ((1, 8), (1, 1))
strategy2 = ((4, 2, 1), (4, 2, 1))
net = GradWrap(NetWithLoss(Net(1, strategy1, strategy2)))
net.set_auto_parallel()
x = Tensor(np.ones([64, 64]), dtype=ms.float32)
y = Tensor(np.ones([64, 64, 64]), dtype=ms.float32)
net.set_train()
_cell_graph_executor.compile(net, x, y)
2020-06-11 20:21:28 +08:00
def test_gatherv2_semi_auto2():
"""
Feature: distribute operator SparseGatherV2 in auto parallel.
Description: gather net with strategy in semi auto parallel, gather axis is 1.
Expectation: compile done without error.
"""
2020-06-11 20:21:28 +08:00
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
strategy1 = ((8, 1), (1, 1))
strategy2 = ((4, 2, 1), (4, 2, 1))
net = GradWrap(NetWithLoss(Net(1, strategy1, strategy2)))
net.set_auto_parallel()
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
y = Tensor(np.ones([64, 64, 64]), dtype=ms.float32)
net.set_train()
_cell_graph_executor.compile(net, x, y)
2020-06-11 20:21:28 +08:00
def test_gatherv2_semi_auto3():
"""
Feature: distribute operator SparseGatherV2 in auto parallel.
Description: gather net with strategy in semi auto parallel, gather axis is 1.
Expectation: compile done without error.
"""
2020-06-11 20:21:28 +08:00
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
strategy1 = ((2, 4), (1, 1))
strategy2 = ((4, 2, 1), (4, 2, 1))
net = GradWrap(NetWithLoss(Net(1, strategy1, strategy2)))
net.set_auto_parallel()
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
y = Tensor(np.ones([64, 64, 64]), dtype=ms.float32)
net.set_train()
_cell_graph_executor.compile(net, x, y)
2020-06-11 20:21:28 +08:00
def test_gatherv2_semi_auto4():
"""
Feature: distribute operator SparseGatherV2 in auto parallel.
Description: gather net with strategy in semi auto parallel, gather axis is 0.
Expectation: compile done without error.
"""
context.set_auto_parallel_context(dataset_strategy="full_batch")
2020-06-11 20:21:28 +08:00
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
strategy2 = ((4, 2, 1), (4, 2, 1))
net = GradWrap(NetWithLoss(Net(0, None, strategy2)))
net.set_auto_parallel()
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
y = Tensor(np.ones([64, 64, 32]), dtype=ms.float32)
net.set_train()
_cell_graph_executor.compile(net, x, y)
2020-06-11 20:21:28 +08:00
def test_gatherv2_semi_auto5():
"""
Feature: distribute operator SparseGatherV2 in auto parallel.
Description: gather net with strategy in semi auto parallel, gather axis is 1.
Expectation: compile done without error.
"""
2020-06-11 20:21:28 +08:00
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
strategy2 = ((4, 2, 1), (4, 2, 1))
net = GradWrap(NetWithLoss(Net(1, None, strategy2)))
net.set_auto_parallel()
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
y = Tensor(np.ones([64, 64, 64]), dtype=ms.float32)
net.set_train()
_cell_graph_executor.compile(net, x, y)
2020-06-11 20:21:28 +08:00
def test_gatherv2_auto0():
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="auto_parallel")
net = GradWrap(NetWithLoss(Net(0)))
net.set_auto_parallel()
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
y = Tensor(np.ones([64, 64, 32]), dtype=ms.float32)
net.set_train()
_cell_graph_executor.compile(net, x, y)
2020-06-11 20:21:28 +08:00
def test_gatherv2_auto1():
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="auto_parallel")
net = GradWrap(NetWithLoss(Net(1)))
net.set_auto_parallel()
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
y = Tensor(np.ones([64, 64, 64]), dtype=ms.float32)
net.set_train()
_cell_graph_executor.compile(net, x, y)
2020-06-11 20:21:28 +08:00
2020-06-18 11:34:29 +08:00
def test_gatherv2_cpu0():
2020-06-11 20:21:28 +08:00
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
strategy1 = ((8, 1), (1, 1))
strategy2 = ((4, 2, 1), (4, 2, 1))
net = NetWithLoss(Net(0, strategy1, strategy2, None, "CPU"))
net.set_auto_parallel()
x = Tensor(np.ones([64, 64]), dtype=ms.float32)
y = Tensor(np.ones([64, 64, 64]), dtype=ms.float32)
net.set_train()
_cell_graph_executor.compile(net, x, y)
2020-06-11 20:21:28 +08:00
2020-06-18 11:34:29 +08:00
def test_gatherv2_cpu1():
2020-06-11 20:21:28 +08:00
context.set_auto_parallel_context(device_num=16, global_rank=0, parallel_mode="semi_auto_parallel")
strategy1 = ((16, 1), (1, 1))
strategy2 = ((4, 2, 1), (4, 2, 1))
net = NetWithLoss(Net(0, strategy1, strategy2, None, "CPU"))
net.set_auto_parallel()
x = Tensor(np.ones([64, 64]), dtype=ms.float32)
y = Tensor(np.ones([64, 64, 64]), dtype=ms.float32)
net.set_train()
_cell_graph_executor.compile(net, x, y)
2020-06-11 20:21:28 +08:00
2020-06-18 11:34:29 +08:00
def test_gatherv2_cpu2():
2020-06-11 20:21:28 +08:00
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
strategy1 = ((1, 8), (1, 1))
strategy2 = ((4, 2, 1), (4, 2, 1))
net = NetWithLoss(Net(0, strategy1, strategy2, None, "CPU"))
net.set_auto_parallel()
x = Tensor(np.ones([64, 64]), dtype=ms.float32)
y = Tensor(np.ones([64, 64, 64]), dtype=ms.float32)
net.set_train()
_cell_graph_executor.compile(net, x, y)