mindspore/tests/ut/python/utils/test_initializer.py

261 lines
8.7 KiB
Python
Raw Normal View History

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
""" test_initializer """
import math
2020-05-26 19:11:12 +08:00
from functools import reduce
import numpy as np
import pytest as py
2020-05-13 11:30:27 +08:00
from scipy import stats
import mindspore as ms
2020-05-13 11:30:27 +08:00
import mindspore.common.initializer as init
import mindspore.nn as nn
from mindspore import context
2020-05-18 16:42:35 +08:00
from mindspore.common.parameter import Parameter
from mindspore.common.tensor import Tensor
from mindspore.nn import Conv2d
2020-05-18 16:42:35 +08:00
from mindspore.ops import operations as P
from ..ut_filter import non_graph_engine
2020-05-13 11:30:27 +08:00
# pylint: disable=W0212
# W0212: protected-access
class InitTwo(init.Initializer):
"""Initialize the array to two."""
2020-05-13 11:30:27 +08:00
def _initialize(self, arr):
init._assignment(arr, 2)
def _check_value(tensor, value_min, value_max):
nd = tensor.asnumpy()
for ele in nd.flatten():
if value_min <= ele <= value_max:
continue
raise ValueError('value_min = %d, ele = %d, value_max = %d'
% (value_min, ele, value_max))
def _check_uniform(tensor, boundary_a, boundary_b):
samples = tensor.asnumpy().reshape((-1))
_, p = stats.kstest(samples, 'uniform', (boundary_a, (boundary_b - boundary_a)))
2020-05-13 11:30:27 +08:00
print("p-value is %f" % p)
return p > 0.0001
def test_init_Initializer():
tensor = init.initializer(InitTwo(), [2, 2], ms.int32)
assert tensor.shape == (2, 2)
_check_value(tensor.to_tensor(), 2, 2)
def test_init_tensor():
tensor = ms.Tensor(np.zeros([1, 2, 3]))
tensor = init.initializer(tensor, [1, 2, 3], ms.float32)
assert tensor.shape == (1, 2, 3)
def test_init_zero_default_dtype():
tensor = init.initializer(init.Zero(), [2, 2])
assert tensor.dtype == ms.float32
_check_value(tensor.to_tensor(), 0, 0)
def test_init_zero():
tensor = init.initializer(init.Zero(), [2, 2], ms.float32)
_check_value(tensor.to_tensor(), 0, 0)
def test_init_zero_alias_default_dtype():
tensor = init.initializer('zeros', [1, 2])
assert tensor.dtype == ms.float32
_check_value(tensor.to_tensor(), 0, 0)
def test_init_zero_alias():
tensor = init.initializer('zeros', [1, 2], ms.float32)
_check_value(tensor.to_tensor(), 0, 0)
def test_init_one():
tensor = init.initializer(init.One(), [2, 2], ms.float32)
_check_value(tensor.to_tensor(), 1, 1)
def test_init_one_alias():
tensor = init.initializer('ones', [1, 2], ms.float32)
_check_value(tensor.to_tensor(), 1, 1)
def test_init_constant():
tensor = init.initializer(init.Constant(1), [2, 2], ms.float32)
_check_value(tensor.to_tensor(), 1, 1)
def test_init_uniform():
scale = 10
tensor = init.initializer(init.Uniform(scale=scale), [5, 4], ms.float32)
_check_value(tensor.to_tensor(), -scale, scale)
def test_init_uniform_alias():
scale = 100
tensor = init.initializer('uniform', [5, 4], ms.float32)
_check_value(tensor.to_tensor(), -scale, scale)
def test_init_normal():
tensor = init.initializer(init.Normal(), [5, 4], ms.float32)
assert isinstance(tensor, init.Normal), 'Normal init failed!'
def test_init_truncated_normal():
tensor = init.initializer(init.TruncatedNormal(), [5, 4], ms.float32)
assert isinstance(tensor, init.TruncatedNormal), 'TruncatedNormal init failed!'
def test_init_normal_alias():
tensor = init.initializer('normal', [5, 4], ms.float32)
assert isinstance(tensor, init.Normal), 'Normal init failed!'
def test_init_truncatednormal_alias():
tensor = init.initializer('truncatednormal', [5, 4], ms.float32)
assert isinstance(tensor, init.TruncatedNormal), 'TruncatedNormal init failed!'
def test_init_abnormal():
with py.raises(TypeError):
init.initializer([''], [5, 4], ms.float32)
2020-06-04 21:36:54 +08:00
def test_initializer_reinit():
weights = init.initializer("XavierUniform", shape=(10, 1, 10, 10), dtype=ms.float16)
assert weights.dtype == ms.float16
assert weights.shape == (10, 1, 10, 10)
weights = init.initializer(weights)
assert weights.dtype == ms.float16
assert weights.shape == (10, 1, 10, 10)
weights.shape = None
weights = init.initializer(weights, (10, 1))
assert weights.dtype == ms.float16
assert weights.shape == (10, 1)
def test_init_xavier_uniform():
""" test_init_xavier_uniform """
gain = 1.2
tensor1 = init.initializer(init.XavierUniform(gain=gain), [20, 22], ms.float32).to_tensor()
tensor2 = init.initializer(init.XavierUniform(), [20, 22], ms.float32).to_tensor()
tensor3 = init.initializer(init.XavierUniform(gain=gain), [20, 22, 5, 5], ms.float32).to_tensor()
tensor4 = init.initializer(init.XavierUniform(), [20, 22, 5, 5], ms.float32).to_tensor()
tensor5 = init.initializer('xavier_uniform', [20, 22, 5, 5], ms.float32).to_tensor()
tensor6 = init.initializer('xavier_uniform', [20, 22], ms.float32).to_tensor()
tensor_dict = {tensor1: gain, tensor2: None, tensor3: gain, tensor4: None, tensor5: None, tensor6: None}
for tensor, gain_value in tensor_dict.items():
if gain_value is None:
gain_value = 1
shape = tensor.asnumpy().shape
if len(shape) > 2:
s = reduce(lambda x, y: x * y, shape[2:])
else:
s = 1
n_in = shape[1] * s
n_out = shape[0] * s
std = gain_value * math.sqrt(2 / (n_in + n_out))
boundary = std * math.sqrt(3)
assert _check_uniform(tensor, -boundary, boundary)
def test_init_xavier_uniform_error():
with py.raises(ValueError):
init.initializer(init.XavierUniform(), [6], ms.float32).to_tensor()
def test_init_he_uniform():
""" test_init_he_uniform """
tensor1 = init.initializer(init.HeUniform(), [20, 22], ms.float32)
tensor2 = init.initializer(init.HeUniform(), [20, 22, 5, 5], ms.float32)
tensor3 = init.initializer('he_uniform', [20, 22, 5, 5], ms.float32)
tensor4 = init.initializer('he_uniform', [20, 22], ms.float32)
tensors = [tensor1.to_tensor(), tensor2.to_tensor(), tensor3.to_tensor(), tensor4.to_tensor()]
for tensor in tensors:
shape = tensor.asnumpy().shape
if len(shape) > 2:
s = reduce(lambda x, y: x * y, shape[2:])
else:
s = 1
n_in = shape[1] * s
std = math.sqrt(2 / n_in)
boundary = std * math.sqrt(3)
assert _check_uniform(tensor, -boundary, boundary)
def test_init_he_uniform_error():
with py.raises(ValueError):
init.initializer(init.HeUniform(), [6], ms.float32).to_tensor()
def test_conv2d_abnormal_kernel_negative():
kernel = np.random.randn(64, 3, 7, 7).astype(np.float32)
with py.raises(ValueError):
ms.Model(
Conv2d(in_channels=3, out_channels=64, kernel_size=-7, stride=3,
padding=0, weight_init=ms.Tensor(kernel)))
@non_graph_engine
def test_conv2d_abnormal_kernel_normal():
kernel = np.random.randn(64, 3, 7, 7).astype(np.float32)
input_data = np.random.randn(32, 3, 224, 112).astype(np.float32)
context.set_context(mode=context.GRAPH_MODE)
model = ms.Model(
Conv2d(in_channels=3, out_channels=64, kernel_size=7, stride=3,
padding=0, weight_init=ms.Tensor(kernel)))
model.predict(ms.Tensor(input_data))
@non_graph_engine
def test_conv2d_abnormal_kernel_truncated_normal():
input_data = init.initializer(init.TruncatedNormal(), [64, 3, 7, 7], ms.float32).to_tensor()
context.set_context(mode=context.GRAPH_MODE)
model = ms.Model(
Conv2d(in_channels=3, out_channels=64, kernel_size=7, stride=3,
padding=0, weight_init="truncatednormal"))
model.predict(input_data)
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.add = P.TensorAdd()
self.t1 = Parameter(init.initializer('uniform', [5, 4], ms.float32), name="w1")
self.t2 = Parameter(init.initializer(init.TruncatedNormal(), [5, 4], ms.float32), name="w2")
def construct(self, x):
z = self.add(x, self.t1)
z = self.add(z, self.t2)
return z
2020-05-18 10:31:46 +08:00
def test_weight_shape():
context.set_context(mode=context.GRAPH_MODE, save_graphs=True)
a = np.arange(20).reshape(5, 4)
t = Tensor(a, dtype=ms.float32)
net = Net()
out = net(t)
print(out)