2020-03-27 14:49:12 +08:00
|
|
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
# ============================================================================
|
|
|
|
""" test_initializer """
|
|
|
|
import math
|
2020-05-26 19:11:12 +08:00
|
|
|
from functools import reduce
|
2020-03-27 14:49:12 +08:00
|
|
|
import numpy as np
|
|
|
|
import pytest as py
|
2020-05-13 11:30:27 +08:00
|
|
|
from scipy import stats
|
|
|
|
|
2020-03-27 14:49:12 +08:00
|
|
|
import mindspore as ms
|
2020-05-13 11:30:27 +08:00
|
|
|
import mindspore.common.initializer as init
|
2020-05-09 13:40:13 +08:00
|
|
|
import mindspore.nn as nn
|
2020-03-27 14:49:12 +08:00
|
|
|
from mindspore import context
|
2020-05-18 16:42:35 +08:00
|
|
|
from mindspore.common.parameter import Parameter
|
|
|
|
from mindspore.common.tensor import Tensor
|
2020-03-27 14:49:12 +08:00
|
|
|
from mindspore.nn import Conv2d
|
2020-05-18 16:42:35 +08:00
|
|
|
from mindspore.ops import operations as P
|
2020-03-27 14:49:12 +08:00
|
|
|
from ..ut_filter import non_graph_engine
|
2020-05-13 11:30:27 +08:00
|
|
|
|
|
|
|
|
2020-03-27 14:49:12 +08:00
|
|
|
# pylint: disable=W0212
|
|
|
|
# W0212: protected-access
|
|
|
|
|
|
|
|
class InitTwo(init.Initializer):
|
|
|
|
"""Initialize the array to two."""
|
2020-05-13 11:30:27 +08:00
|
|
|
|
2020-03-27 14:49:12 +08:00
|
|
|
def _initialize(self, arr):
|
|
|
|
init._assignment(arr, 2)
|
|
|
|
|
|
|
|
|
|
|
|
def _check_value(tensor, value_min, value_max):
|
|
|
|
nd = tensor.asnumpy()
|
|
|
|
for ele in nd.flatten():
|
|
|
|
if value_min <= ele <= value_max:
|
|
|
|
continue
|
2020-03-31 16:12:43 +08:00
|
|
|
raise ValueError('value_min = %d, ele = %d, value_max = %d'
|
|
|
|
% (value_min, ele, value_max))
|
2020-03-27 14:49:12 +08:00
|
|
|
|
|
|
|
|
|
|
|
def _check_uniform(tensor, boundary_a, boundary_b):
|
|
|
|
samples = tensor.asnumpy().reshape((-1))
|
|
|
|
_, p = stats.kstest(samples, 'uniform', (boundary_a, (boundary_b - boundary_a)))
|
2020-05-13 11:30:27 +08:00
|
|
|
print("p-value is %f" % p)
|
2020-03-27 14:49:12 +08:00
|
|
|
return p > 0.0001
|
|
|
|
|
|
|
|
|
|
|
|
def test_init_Initializer():
|
|
|
|
tensor = init.initializer(InitTwo(), [2, 2], ms.int32)
|
2020-05-09 13:40:13 +08:00
|
|
|
assert tensor.shape == (2, 2)
|
|
|
|
_check_value(tensor.to_tensor(), 2, 2)
|
2020-03-27 14:49:12 +08:00
|
|
|
|
|
|
|
|
|
|
|
def test_init_tensor():
|
|
|
|
tensor = ms.Tensor(np.zeros([1, 2, 3]))
|
|
|
|
tensor = init.initializer(tensor, [1, 2, 3], ms.float32)
|
2020-06-09 12:18:51 +08:00
|
|
|
assert tensor.shape == (1, 2, 3)
|
2020-03-27 14:49:12 +08:00
|
|
|
|
|
|
|
|
|
|
|
def test_init_zero_default_dtype():
|
|
|
|
tensor = init.initializer(init.Zero(), [2, 2])
|
2020-05-09 13:40:13 +08:00
|
|
|
assert tensor.dtype == ms.float32
|
|
|
|
_check_value(tensor.to_tensor(), 0, 0)
|
2020-03-27 14:49:12 +08:00
|
|
|
|
|
|
|
|
|
|
|
def test_init_zero():
|
|
|
|
tensor = init.initializer(init.Zero(), [2, 2], ms.float32)
|
2020-05-09 13:40:13 +08:00
|
|
|
_check_value(tensor.to_tensor(), 0, 0)
|
2020-03-27 14:49:12 +08:00
|
|
|
|
|
|
|
|
|
|
|
def test_init_zero_alias_default_dtype():
|
|
|
|
tensor = init.initializer('zeros', [1, 2])
|
2020-05-09 13:40:13 +08:00
|
|
|
assert tensor.dtype == ms.float32
|
|
|
|
_check_value(tensor.to_tensor(), 0, 0)
|
2020-03-27 14:49:12 +08:00
|
|
|
|
|
|
|
|
|
|
|
def test_init_zero_alias():
|
|
|
|
tensor = init.initializer('zeros', [1, 2], ms.float32)
|
2020-05-09 13:40:13 +08:00
|
|
|
_check_value(tensor.to_tensor(), 0, 0)
|
2020-03-27 14:49:12 +08:00
|
|
|
|
|
|
|
|
|
|
|
def test_init_one():
|
|
|
|
tensor = init.initializer(init.One(), [2, 2], ms.float32)
|
2020-05-09 13:40:13 +08:00
|
|
|
_check_value(tensor.to_tensor(), 1, 1)
|
2020-03-27 14:49:12 +08:00
|
|
|
|
|
|
|
|
|
|
|
def test_init_one_alias():
|
|
|
|
tensor = init.initializer('ones', [1, 2], ms.float32)
|
2020-05-09 13:40:13 +08:00
|
|
|
_check_value(tensor.to_tensor(), 1, 1)
|
2020-03-27 14:49:12 +08:00
|
|
|
|
|
|
|
|
2020-03-31 16:12:43 +08:00
|
|
|
def test_init_constant():
|
|
|
|
tensor = init.initializer(init.Constant(1), [2, 2], ms.float32)
|
2020-05-09 13:40:13 +08:00
|
|
|
_check_value(tensor.to_tensor(), 1, 1)
|
2020-03-31 16:12:43 +08:00
|
|
|
|
|
|
|
|
2020-03-27 14:49:12 +08:00
|
|
|
def test_init_uniform():
|
|
|
|
scale = 10
|
|
|
|
tensor = init.initializer(init.Uniform(scale=scale), [5, 4], ms.float32)
|
2020-05-09 13:40:13 +08:00
|
|
|
_check_value(tensor.to_tensor(), -scale, scale)
|
2020-03-27 14:49:12 +08:00
|
|
|
|
|
|
|
|
|
|
|
def test_init_uniform_alias():
|
|
|
|
scale = 100
|
|
|
|
tensor = init.initializer('uniform', [5, 4], ms.float32)
|
2020-05-09 13:40:13 +08:00
|
|
|
_check_value(tensor.to_tensor(), -scale, scale)
|
2020-03-27 14:49:12 +08:00
|
|
|
|
|
|
|
|
|
|
|
def test_init_normal():
|
|
|
|
tensor = init.initializer(init.Normal(), [5, 4], ms.float32)
|
2020-05-09 13:40:13 +08:00
|
|
|
assert isinstance(tensor, init.Normal), 'Normal init failed!'
|
2020-03-27 14:49:12 +08:00
|
|
|
|
|
|
|
|
|
|
|
def test_init_truncated_normal():
|
|
|
|
tensor = init.initializer(init.TruncatedNormal(), [5, 4], ms.float32)
|
2020-05-09 13:40:13 +08:00
|
|
|
assert isinstance(tensor, init.TruncatedNormal), 'TruncatedNormal init failed!'
|
2020-03-27 14:49:12 +08:00
|
|
|
|
|
|
|
|
|
|
|
def test_init_normal_alias():
|
|
|
|
tensor = init.initializer('normal', [5, 4], ms.float32)
|
2020-05-09 13:40:13 +08:00
|
|
|
assert isinstance(tensor, init.Normal), 'Normal init failed!'
|
2020-03-27 14:49:12 +08:00
|
|
|
|
|
|
|
|
|
|
|
def test_init_truncatednormal_alias():
|
|
|
|
tensor = init.initializer('truncatednormal', [5, 4], ms.float32)
|
2020-05-09 13:40:13 +08:00
|
|
|
assert isinstance(tensor, init.TruncatedNormal), 'TruncatedNormal init failed!'
|
2020-03-27 14:49:12 +08:00
|
|
|
|
|
|
|
|
|
|
|
def test_init_abnormal():
|
|
|
|
with py.raises(TypeError):
|
|
|
|
init.initializer([''], [5, 4], ms.float32)
|
|
|
|
|
2020-06-04 21:36:54 +08:00
|
|
|
def test_initializer_reinit():
|
|
|
|
weights = init.initializer("XavierUniform", shape=(10, 1, 10, 10), dtype=ms.float16)
|
|
|
|
assert weights.dtype == ms.float16
|
|
|
|
assert weights.shape == (10, 1, 10, 10)
|
|
|
|
weights = init.initializer(weights)
|
|
|
|
assert weights.dtype == ms.float16
|
|
|
|
assert weights.shape == (10, 1, 10, 10)
|
|
|
|
weights.shape = None
|
|
|
|
weights = init.initializer(weights, (10, 1))
|
|
|
|
assert weights.dtype == ms.float16
|
|
|
|
assert weights.shape == (10, 1)
|
|
|
|
|
2020-03-27 14:49:12 +08:00
|
|
|
def test_init_xavier_uniform():
|
|
|
|
""" test_init_xavier_uniform """
|
|
|
|
gain = 1.2
|
2020-05-09 13:40:13 +08:00
|
|
|
tensor1 = init.initializer(init.XavierUniform(gain=gain), [20, 22], ms.float32).to_tensor()
|
|
|
|
tensor2 = init.initializer(init.XavierUniform(), [20, 22], ms.float32).to_tensor()
|
|
|
|
tensor3 = init.initializer(init.XavierUniform(gain=gain), [20, 22, 5, 5], ms.float32).to_tensor()
|
|
|
|
tensor4 = init.initializer(init.XavierUniform(), [20, 22, 5, 5], ms.float32).to_tensor()
|
|
|
|
tensor5 = init.initializer('xavier_uniform', [20, 22, 5, 5], ms.float32).to_tensor()
|
|
|
|
tensor6 = init.initializer('xavier_uniform', [20, 22], ms.float32).to_tensor()
|
2020-03-27 14:49:12 +08:00
|
|
|
tensor_dict = {tensor1: gain, tensor2: None, tensor3: gain, tensor4: None, tensor5: None, tensor6: None}
|
|
|
|
|
|
|
|
for tensor, gain_value in tensor_dict.items():
|
|
|
|
if gain_value is None:
|
|
|
|
gain_value = 1
|
|
|
|
shape = tensor.asnumpy().shape
|
|
|
|
if len(shape) > 2:
|
|
|
|
s = reduce(lambda x, y: x * y, shape[2:])
|
|
|
|
else:
|
|
|
|
s = 1
|
|
|
|
n_in = shape[1] * s
|
|
|
|
n_out = shape[0] * s
|
|
|
|
std = gain_value * math.sqrt(2 / (n_in + n_out))
|
|
|
|
boundary = std * math.sqrt(3)
|
|
|
|
assert _check_uniform(tensor, -boundary, boundary)
|
|
|
|
|
|
|
|
|
|
|
|
def test_init_xavier_uniform_error():
|
|
|
|
with py.raises(ValueError):
|
2020-05-09 13:40:13 +08:00
|
|
|
init.initializer(init.XavierUniform(), [6], ms.float32).to_tensor()
|
2020-03-27 14:49:12 +08:00
|
|
|
|
|
|
|
|
|
|
|
def test_init_he_uniform():
|
|
|
|
""" test_init_he_uniform """
|
|
|
|
tensor1 = init.initializer(init.HeUniform(), [20, 22], ms.float32)
|
|
|
|
tensor2 = init.initializer(init.HeUniform(), [20, 22, 5, 5], ms.float32)
|
|
|
|
tensor3 = init.initializer('he_uniform', [20, 22, 5, 5], ms.float32)
|
|
|
|
tensor4 = init.initializer('he_uniform', [20, 22], ms.float32)
|
2020-05-09 13:40:13 +08:00
|
|
|
tensors = [tensor1.to_tensor(), tensor2.to_tensor(), tensor3.to_tensor(), tensor4.to_tensor()]
|
2020-03-27 14:49:12 +08:00
|
|
|
|
|
|
|
for tensor in tensors:
|
|
|
|
shape = tensor.asnumpy().shape
|
|
|
|
if len(shape) > 2:
|
|
|
|
s = reduce(lambda x, y: x * y, shape[2:])
|
|
|
|
else:
|
|
|
|
s = 1
|
|
|
|
n_in = shape[1] * s
|
|
|
|
std = math.sqrt(2 / n_in)
|
|
|
|
boundary = std * math.sqrt(3)
|
|
|
|
assert _check_uniform(tensor, -boundary, boundary)
|
|
|
|
|
|
|
|
|
|
|
|
def test_init_he_uniform_error():
|
|
|
|
with py.raises(ValueError):
|
2020-05-09 13:40:13 +08:00
|
|
|
init.initializer(init.HeUniform(), [6], ms.float32).to_tensor()
|
2020-03-27 14:49:12 +08:00
|
|
|
|
|
|
|
|
|
|
|
def test_conv2d_abnormal_kernel_negative():
|
|
|
|
kernel = np.random.randn(64, 3, 7, 7).astype(np.float32)
|
|
|
|
with py.raises(ValueError):
|
|
|
|
ms.Model(
|
|
|
|
Conv2d(in_channels=3, out_channels=64, kernel_size=-7, stride=3,
|
|
|
|
padding=0, weight_init=ms.Tensor(kernel)))
|
|
|
|
|
|
|
|
|
|
|
|
@non_graph_engine
|
|
|
|
def test_conv2d_abnormal_kernel_normal():
|
|
|
|
kernel = np.random.randn(64, 3, 7, 7).astype(np.float32)
|
|
|
|
input_data = np.random.randn(32, 3, 224, 112).astype(np.float32)
|
|
|
|
context.set_context(mode=context.GRAPH_MODE)
|
|
|
|
model = ms.Model(
|
|
|
|
Conv2d(in_channels=3, out_channels=64, kernel_size=7, stride=3,
|
|
|
|
padding=0, weight_init=ms.Tensor(kernel)))
|
|
|
|
model.predict(ms.Tensor(input_data))
|
|
|
|
|
|
|
|
|
|
|
|
@non_graph_engine
|
|
|
|
def test_conv2d_abnormal_kernel_truncated_normal():
|
2020-05-09 13:40:13 +08:00
|
|
|
input_data = init.initializer(init.TruncatedNormal(), [64, 3, 7, 7], ms.float32).to_tensor()
|
2020-03-27 14:49:12 +08:00
|
|
|
context.set_context(mode=context.GRAPH_MODE)
|
|
|
|
model = ms.Model(
|
|
|
|
Conv2d(in_channels=3, out_channels=64, kernel_size=7, stride=3,
|
|
|
|
padding=0, weight_init="truncatednormal"))
|
|
|
|
model.predict(input_data)
|
2020-05-09 13:40:13 +08:00
|
|
|
|
|
|
|
|
|
|
|
class Net(nn.Cell):
|
|
|
|
def __init__(self):
|
|
|
|
super(Net, self).__init__()
|
|
|
|
self.add = P.TensorAdd()
|
|
|
|
self.t1 = Parameter(init.initializer('uniform', [5, 4], ms.float32), name="w1")
|
|
|
|
self.t2 = Parameter(init.initializer(init.TruncatedNormal(), [5, 4], ms.float32), name="w2")
|
|
|
|
|
|
|
|
def construct(self, x):
|
|
|
|
z = self.add(x, self.t1)
|
|
|
|
z = self.add(z, self.t2)
|
|
|
|
return z
|
|
|
|
|
2020-05-18 10:31:46 +08:00
|
|
|
|
2020-05-09 13:40:13 +08:00
|
|
|
def test_weight_shape():
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, save_graphs=True)
|
|
|
|
a = np.arange(20).reshape(5, 4)
|
|
|
|
t = Tensor(a, dtype=ms.float32)
|
|
|
|
net = Net()
|
|
|
|
out = net(t)
|
|
|
|
print(out)
|