mindspore/tests/st/ops/gpu/test_print_op.py

203 lines
4.9 KiB
Python
Raw Normal View History

# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
from mindspore import Tensor
import mindspore.nn as nn
from mindspore.ops import operations as P
import mindspore.context as context
class PrintNetOneInput(nn.Cell):
def __init__(self):
super(PrintNetOneInput, self).__init__()
self.op = P.Print()
def construct(self, x):
self.op(x)
return x
class PrintNetTwoInputs(nn.Cell):
def __init__(self):
super(PrintNetTwoInputs, self).__init__()
self.op = P.Print()
def construct(self, x, y):
self.op(x, y)
return x
class PrintNetIndex(nn.Cell):
def __init__(self):
super(PrintNetIndex, self).__init__()
self.op = P.Print()
def construct(self, x):
self.op(x[0][0][6][3])
return x
def print_testcase(nptype):
# large shape
x = np.arange(20808).reshape(6, 3, 34, 34).astype(nptype)
# a value that can be stored as int8_t
x[0][0][6][3] = 125
# small shape
y = np.arange(9).reshape(3, 3).astype(nptype)
x = Tensor(x)
y = Tensor(y)
# graph mode
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
net_1 = PrintNetOneInput()
net_2 = PrintNetTwoInputs()
net_3 = PrintNetIndex()
net_1(x)
net_2(x, y)
net_3(x)
2021-05-10 23:41:10 +08:00
2021-03-13 03:12:19 +08:00
class PrintNetString(nn.Cell):
def __init__(self):
super(PrintNetString, self).__init__()
self.op = P.Print()
def construct(self, x, y):
self.op("The first Tensor is", x)
self.op("The second Tensor is", y)
self.op("This line only prints string", "Another line")
self.op("The first Tensor is", x, y, "is the second Tensor")
return x
2021-05-10 23:41:10 +08:00
2021-03-13 03:12:19 +08:00
def print_testcase_string(nptype):
x = np.ones(18).astype(nptype)
y = np.arange(9).reshape(3, 3).astype(nptype)
x = Tensor(x)
y = Tensor(y)
# graph mode
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
net = PrintNetString()
net(x, y)
2021-05-10 23:41:10 +08:00
class PrintTypes(nn.Cell):
def __init__(self):
super(PrintTypes, self).__init__()
self.op = P.Print()
def construct(self, x, y, z):
self.op("This is a scalar:", 34, "This is int:", x, "This is float64:", y, "This is int64:", z)
return x
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_print_multiple_types():
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
x = Tensor(np.array([[1], [3], [4], [6], [3]], dtype=np.int32))
y = Tensor(np.array([[1], [3], [4], [6], [3]]).astype(np.float64))
z = Tensor(np.arange(9).reshape(3, 3).astype(np.int64))
net = PrintTypes()
net(x, y, z)
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_print_bool():
print_testcase(np.bool)
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_print_int8():
print_testcase(np.int8)
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_print_int16():
print_testcase(np.int16)
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_print_int32():
print_testcase(np.int32)
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_print_int64():
print_testcase(np.int64)
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_print_uint8():
print_testcase(np.uint8)
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_print_uint16():
print_testcase(np.uint16)
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_print_uint32():
print_testcase(np.uint32)
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_print_uint64():
print_testcase(np.uint64)
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_print_float16():
print_testcase(np.float16)
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_print_float32():
print_testcase(np.float32)
2021-03-13 03:12:19 +08:00
@pytest.mark.level1
2021-03-13 03:12:19 +08:00
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_print_string():
print_testcase_string(np.float32)