2020-03-27 14:49:12 +08:00
|
|
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
# ============================================================================
|
|
|
|
import numpy as np
|
|
|
|
from mindspore import context
|
|
|
|
from mindspore import Tensor, Parameter
|
|
|
|
from mindspore.nn import Cell
|
|
|
|
from mindspore.ops import operations as P
|
|
|
|
import mindspore.ops.composite as C
|
|
|
|
from mindspore.common.api import _executor
|
2020-03-28 18:33:10 +08:00
|
|
|
from mindspore.common.parameter import ParameterTuple
|
|
|
|
from mindspore.common import dtype as mstype
|
2020-03-27 14:49:12 +08:00
|
|
|
|
|
|
|
context.set_context(mode=context.GRAPH_MODE)
|
|
|
|
|
|
|
|
def test_net_vargs_expand():
|
|
|
|
class AddNet(Cell):
|
|
|
|
def __init__(self):
|
|
|
|
super(AddNet, self).__init__()
|
|
|
|
self.w = Parameter(Tensor(np.ones((3, 4, 5), np.float32)), "w2", requires_grad=True)
|
|
|
|
def construct(self, x, y):
|
|
|
|
return x + y
|
|
|
|
x = Tensor(np.random.normal(0, 1, [3, 4, 5]).astype(np.float32))
|
|
|
|
y = Tensor(np.random.normal(0, 1, [3, 4, 5]).astype(np.float32))
|
|
|
|
sens = Tensor(np.random.normal(0, 1, [3, 4, 5]).astype(np.float32))
|
|
|
|
net = AddNet()
|
|
|
|
out = C.grad_all_with_sens(net, net.trainable_params())(x, y, sens)
|
2020-03-28 18:33:10 +08:00
|
|
|
|
|
|
|
class VarNet(Cell):
|
|
|
|
def __init__(self, net):
|
|
|
|
super(VarNet, self).__init__()
|
|
|
|
self.b = Parameter(Tensor(np.ones([3, 4, 5]), dtype=mstype.float32), "b", requires_grad=True)
|
|
|
|
self.w = Parameter(Tensor(np.ones([3, 4, 5]), dtype=mstype.float32), "w", requires_grad=True)
|
|
|
|
self.net = net
|
|
|
|
def construct(self, *args):
|
|
|
|
return self.net(*args)*self.w + self.b
|
|
|
|
|
|
|
|
class SecondNet(Cell):
|
|
|
|
def __init__(self):
|
|
|
|
super(SecondNet, self).__init__()
|
|
|
|
self.b2 = Parameter(Tensor(np.ones([3, 4, 5]), dtype=mstype.float32), "b2", requires_grad=True)
|
|
|
|
def construct(self, *args):
|
|
|
|
res = args[0] + args[1]
|
|
|
|
return res + self.b2
|
|
|
|
def test_all_var_args_grad_with_sens():
|
|
|
|
""""test grad_by_list_with_sens with all var args input"""
|
|
|
|
class GradNet(Cell):
|
|
|
|
def __init__(self, net):
|
|
|
|
super(GradNet, self).__init__()
|
|
|
|
self.weights = ParameterTuple(net.trainable_params())
|
|
|
|
self.net = net
|
|
|
|
def construct(self, *inputs):
|
|
|
|
return C.grad_by_list_with_sens(self.net, self.weights)(*inputs)
|
|
|
|
x = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32)
|
|
|
|
y = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32)
|
|
|
|
sens = Tensor(1.0, dtype=mstype.float32)
|
|
|
|
net = VarNet(SecondNet())
|
|
|
|
grad_net = GradNet(net)
|
|
|
|
out = grad_net(x, y, sens)
|
|
|
|
|
|
|
|
def test_grad_list_var_args():
|
|
|
|
class GradNet(Cell):
|
|
|
|
def __init__(self, net):
|
|
|
|
super(GradNet, self).__init__()
|
|
|
|
self.weights = ParameterTuple(net.trainable_params())
|
|
|
|
self.net = net
|
|
|
|
def construct(self, *inputs):
|
|
|
|
return C.grad_by_list(self.net, self.weights)(*inputs)
|
|
|
|
x = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32)
|
|
|
|
y = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32)
|
|
|
|
net = VarNet(SecondNet())
|
|
|
|
grad_net = GradNet(net)
|
|
|
|
out = grad_net(x, y)
|
|
|
|
|
|
|
|
def test_grad_all_var_args():
|
|
|
|
class GradNet(Cell):
|
|
|
|
def __init__(self, net):
|
|
|
|
super(GradNet, self).__init__()
|
|
|
|
self.weights = ParameterTuple(net.trainable_params())
|
|
|
|
self.net = net
|
|
|
|
def construct(self, *inputs):
|
|
|
|
return C.grad_all(self.net)(*inputs)
|
|
|
|
x = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32)
|
|
|
|
y = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32)
|
|
|
|
net = VarNet(SecondNet())
|
|
|
|
grad_net = GradNet(net)
|
|
|
|
out = grad_net(x, y)
|
|
|
|
|
|
|
|
def test_grad_all_var_args_with_sens():
|
|
|
|
class GradNet(Cell):
|
|
|
|
def __init__(self, net):
|
|
|
|
super(GradNet, self).__init__()
|
|
|
|
self.weights = ParameterTuple(net.trainable_params())
|
|
|
|
self.net = net
|
|
|
|
def construct(self, *inputs):
|
|
|
|
return C.grad_all_with_sens(self.net)(*inputs)
|
|
|
|
x = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32)
|
|
|
|
y = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32)
|
|
|
|
sens = Tensor(1.0, dtype=mstype.float32)
|
|
|
|
net = VarNet(SecondNet())
|
|
|
|
grad_net = GradNet(net)
|
|
|
|
out = grad_net(x, y, sens)
|
|
|
|
|
|
|
|
def test_grad_var_args_with_sens():
|
|
|
|
class GradNet(Cell):
|
|
|
|
def __init__(self, net):
|
|
|
|
super(GradNet, self).__init__()
|
|
|
|
self.weights = ParameterTuple(net.trainable_params())
|
|
|
|
self.net = net
|
|
|
|
def construct(self, *inputs):
|
|
|
|
return C.grad_with_sens(self.net)(*inputs)
|
|
|
|
x = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32)
|
|
|
|
y = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32)
|
|
|
|
sens = Tensor(1.0, dtype=mstype.float32)
|
|
|
|
net = VarNet(SecondNet())
|
|
|
|
grad_net = GradNet(net)
|
|
|
|
out = grad_net(x, y, sens)
|
|
|
|
|
|
|
|
def test_var_args_grad():
|
|
|
|
class VarNet(Cell):
|
|
|
|
def __init__(self, net):
|
|
|
|
super(VarNet, self).__init__()
|
|
|
|
self.b = Parameter(Tensor(np.ones([3, 4, 5]), dtype=mstype.float32), "b", requires_grad=True)
|
|
|
|
self.net = net
|
|
|
|
def construct(self, *args):
|
|
|
|
return self.net(*args) + self.b
|
|
|
|
|
|
|
|
class SecondNet(Cell):
|
|
|
|
def __init__(self):
|
|
|
|
super(SecondNet, self).__init__()
|
|
|
|
self.b2 = Parameter(Tensor(np.ones([3, 4, 5]), dtype=mstype.float32), "b2", requires_grad=True)
|
|
|
|
def construct(self, *args):
|
|
|
|
res = args[0] + args[1]
|
|
|
|
return res + self.b2
|
|
|
|
class GradNet(Cell):
|
|
|
|
def __init__(self, net):
|
|
|
|
super(GradNet, self).__init__()
|
|
|
|
self.net = net
|
|
|
|
self.weights = ParameterTuple(net.trainable_params())
|
|
|
|
def construct(self, x, y, sens):
|
|
|
|
return C.grad_by_list_with_sens(self.net, self.weights)(x, y, sens)
|
|
|
|
x = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32)
|
|
|
|
y = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32)
|
|
|
|
sens = Tensor(1.0, dtype=mstype.float32)
|
|
|
|
net = VarNet(SecondNet())
|
|
|
|
grad_net = GradNet(net)
|
|
|
|
out = grad_net(x, y, sens)
|
|
|
|
|
|
|
|
|
|
|
|
def test_var_args_positional():
|
|
|
|
""""test grad_all with var args in inner graph"""
|
|
|
|
class VarNet(Cell):
|
|
|
|
def __init__(self, net):
|
|
|
|
super(VarNet, self).__init__()
|
|
|
|
self.net = net
|
|
|
|
def construct(self, x, y):
|
|
|
|
return self.net(x, y)*x
|
|
|
|
|
|
|
|
class SecondNet(Cell):
|
|
|
|
def __init__(self):
|
|
|
|
super(SecondNet, self).__init__()
|
|
|
|
def construct(self, *args):
|
|
|
|
return args[0] + args[1]
|
|
|
|
|
|
|
|
class GradNet(Cell):
|
|
|
|
def __init__(self, net):
|
|
|
|
super(GradNet, self).__init__()
|
|
|
|
self.net = net
|
|
|
|
self.weights = ParameterTuple(net.trainable_params())
|
|
|
|
def construct(self, x, y):
|
|
|
|
return C.grad_all(self.net)(x, y)
|
|
|
|
x = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32)
|
|
|
|
y = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32)
|
|
|
|
net = VarNet(SecondNet())
|
|
|
|
grad_net = GradNet(net)
|
|
|
|
out = grad_net(x, y)
|