mindspore/tests/st/ops/cpu/test_softmax_op.py

83 lines
2.6 KiB
Python
Raw Normal View History

# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
2020-05-18 16:42:35 +08:00
import pytest
import mindspore.context as context
2020-05-18 16:42:35 +08:00
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter
2020-05-18 16:42:35 +08:00
from mindspore.ops import operations as P
context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
2020-05-18 10:31:46 +08:00
class NetSoftmax(nn.Cell):
2020-05-18 10:31:46 +08:00
def __init__(self):
super(NetSoftmax, self).__init__()
2020-09-27 09:53:27 +08:00
self.softmax = P.Softmax(axis=-1)
x = Tensor(np.array([[0.1, 0.3, 0.6],
[0.2, -0.6, 0.8],
[0.6, 1, 0.4]]).astype(np.float32))
self.x = Parameter(initializer(x, x.shape), name='x')
def construct(self):
return self.softmax(self.x)
2020-05-18 10:31:46 +08:00
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_softmax():
Softmax = NetSoftmax()
output = Softmax()
output = output.asnumpy()
outputSum = output.sum(axis=1)
expect = np.ones(3)
error = expect * 1.0e-6
diff = np.abs(outputSum - expect)
print(diff)
assert np.all(diff < error)
2020-09-27 09:53:27 +08:00
class NetSoftmax1(nn.Cell):
def __init__(self):
super(NetSoftmax1, self).__init__()
self.softmax = P.Softmax(axis=-2)
x = Tensor(np.array([[0.1, 0.3, 0.6],
[0.2, -0.6, 0.8],
[0.6, 1, 0.4]]).astype(np.float32))
self.x = Parameter(initializer(x, x.shape), name='x')
def construct(self):
return self.softmax(self.x)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_softmax1():
Softmax = NetSoftmax1()
output = Softmax()
output = output.asnumpy()
outputSum = output.sum(axis=0)
expect = np.ones(3)
error = expect * 1.0e-6
diff = np.abs(outputSum - expect)
print(diff)
assert np.all(diff < error)