mindspore/tests/ut/python/parallel/test_expand_dims.py

112 lines
3.9 KiB
Python
Raw Normal View History

2020-04-02 15:18:34 +08:00
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import mindspore as ms
from mindspore import context, Tensor, Parameter
from mindspore.nn import Cell, TrainOneStepCell, Momentum
from mindspore.ops import operations as P
from mindspore.common.api import _executor
class Net(Cell):
def __init__(self, mul_weight, strategy1=None, strategy2=None, strategy3=None):
super().__init__()
self.mul = P.Mul().set_strategy(strategy1)
self.expand_dims = P.ExpandDims().set_strategy(strategy2)
self.mul2 = P.Mul().set_strategy(strategy3)
self.mul_weight = Parameter(mul_weight, "w1")
def construct(self, x, b):
out = self.mul(x, self.mul_weight)
out = self.expand_dims(out, -1)
out = self.mul2(out, b)
return out
class Net2(Cell):
def __init__(self, mul_weight, strategy1=None, strategy2=None):
super().__init__()
self.expand_dims = P.ExpandDims().set_strategy(strategy1)
self.mul = P.Mul().set_strategy(strategy2)
self.mul_weight = Parameter(mul_weight, "w1")
def construct(self, x, b):
out = self.expand_dims(self.mul_weight, -1)
out = self.mul(out, b)
return out
_x = Tensor(np.ones([128, 64, 32]), dtype=ms.float32)
_w1 = Tensor(np.ones([128, 64, 32]), dtype=ms.float32)
_b = Tensor(np.ones([128, 64, 32, 1]), dtype=ms.float32)
def compile(net):
optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
train_net = TrainOneStepCell(net, optimizer)
2020-05-07 10:40:59 +08:00
train_net.set_auto_parallel()
2020-04-02 15:18:34 +08:00
_executor.compile(train_net, _x, _b)
context.reset_auto_parallel_context()
def test_expand_dims_data_parallel():
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
strategy1 = ((16, 1, 1), (16, 1, 1))
strategy2 = ((16, 1, 1), )
strategy3 = ((16, 1, 1, 1), (16, 1, 1, 1))
net = Net(_w1, strategy1, strategy2, strategy3)
compile(net)
def test_expand_dims_model_parallel():
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
strategy1 = ((1, 1, 16), (1, 1, 16))
strategy2 = ((1, 1, 16), )
strategy3 = ((1, 1, 16, 1), (1, 1, 16, 1))
net = Net(_w1, strategy1, strategy2, strategy3)
compile(net)
def test_expand_dims_hybrid_parallel():
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
strategy1 = ((2, 2, 4), (2, 2, 4))
strategy2 = ((2, 2, 4), )
strategy3 = ((2, 2, 4, 1), (2, 2, 4, 1))
net = Net(_w1, strategy1, strategy2, strategy3)
compile(net)
def test_expand_dims_auto_parallel():
context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=16, global_rank=0)
net = Net(_w1)
compile(net)
def test_expand_dims_repeat_calc():
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
strategy1 = ((2, 2, 4), (2, 2, 4))
strategy2 = ((1, 2, 2), )
strategy3 = ((2, 2, 4, 1), (2, 2, 4, 1))
net = Net(_w1, strategy1, strategy2, strategy3)
compile(net)
def test_expand_dims_parameter():
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
strategy1 = ((1, 2, 2), )
strategy2 = ((2, 2, 4, 1), (2, 2, 4, 1))
net = Net2(_w1, strategy1, strategy2)
compile(net)