forked from mindspore-Ecosystem/mindspore
53 lines
1.8 KiB
Python
53 lines
1.8 KiB
Python
|
# Copyright 2019 Huawei Technologies Co., Ltd
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
# ============================================================================
|
||
|
|
||
|
import pytest
|
||
|
from mindspore import Tensor
|
||
|
from mindspore.ops import operations as P
|
||
|
import mindspore.nn as nn
|
||
|
import numpy as np
|
||
|
import mindspore.context as context
|
||
|
from mindspore.common.initializer import initializer
|
||
|
from mindspore.common.parameter import Parameter
|
||
|
|
||
|
context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
|
||
|
|
||
|
class NetSoftmax(nn.Cell):
|
||
|
def __init__( self):
|
||
|
super(NetSoftmax, self).__init__()
|
||
|
self.softmax = P.Softmax()
|
||
|
x = Tensor(np.array([[0.1, 0.3, 0.6],
|
||
|
[0.2, -0.6, 0.8],
|
||
|
[0.6, 1, 0.4]]).astype(np.float32))
|
||
|
self.x = Parameter(initializer(x, x.shape()), name ='x')
|
||
|
|
||
|
def construct(self):
|
||
|
return self.softmax(self.x)
|
||
|
|
||
|
@pytest.mark.level0
|
||
|
@pytest.mark.platform_x86_cpu
|
||
|
@pytest.mark.env_onecard
|
||
|
def test_softmax():
|
||
|
Softmax = NetSoftmax()
|
||
|
output = Softmax()
|
||
|
output = output.asnumpy()
|
||
|
outputSum = output.sum(axis=1)
|
||
|
expect = np.ones(3)
|
||
|
error = expect * 1.0e-6
|
||
|
diff = np.abs(outputSum - expect)
|
||
|
print(diff)
|
||
|
assert np.all(diff < error)
|
||
|
|