2021-02-10 05:57:00 +08:00
|
|
|
# Copyright 2020-21 Huawei Technologies Co., Ltd
|
2020-07-15 19:51:30 +08:00
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
# ============================================================================
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import pytest
|
|
|
|
|
|
|
|
import mindspore.context as context
|
|
|
|
from mindspore import Tensor
|
|
|
|
from mindspore.ops import operations as P
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0
|
|
|
|
@pytest.mark.platform_x86_gpu_training
|
|
|
|
@pytest.mark.env_onecard
|
2021-02-10 05:57:00 +08:00
|
|
|
def test_topk_small_2d():
|
2020-07-15 19:51:30 +08:00
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
|
|
|
|
|
|
|
x_np = np.random.rand(3, 4).astype(np.float32)
|
|
|
|
k = 4
|
|
|
|
ms_output = P.TopK(True)(Tensor(x_np), k)
|
|
|
|
np_output = np.sort(x_np, axis=-1)[..., ::-1][..., 0:k]
|
|
|
|
assert np.allclose(ms_output[0].asnumpy(), np_output)
|
|
|
|
|
|
|
|
x_np = np.random.rand(3, 4).astype(np.float32)
|
|
|
|
k = 4
|
|
|
|
ms_output = P.TopK(False)(Tensor(x_np), k)
|
2021-02-10 05:57:00 +08:00
|
|
|
np_output = np.sort(x_np, axis=-1)[..., ::-1][..., 0:k]
|
|
|
|
assert np.allclose(ms_output[0].asnumpy(), np_output)
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0
|
|
|
|
@pytest.mark.platform_x86_gpu_training
|
|
|
|
@pytest.mark.env_onecard
|
|
|
|
def test_topk_3d():
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
|
|
|
x_np = np.random.rand(2, 256, 128).astype(np.float32)
|
|
|
|
k = 4
|
|
|
|
ms_output = P.TopK(True)(Tensor(x_np), k)
|
|
|
|
np_output = np.sort(x_np, axis=-1)[..., ::-1][..., 0:k]
|
|
|
|
assert np.allclose(ms_output[0].asnumpy(), np_output)
|
2020-07-15 19:51:30 +08:00
|
|
|
|
|
|
|
x_np = np.random.rand(2, 3, 4).astype(np.float32)
|
|
|
|
k = 2
|
|
|
|
ms_output = P.TopK(True)(Tensor(x_np), k)
|
|
|
|
np_output = np.sort(x_np, axis=-1)[..., ::-1][..., 0:k]
|
|
|
|
assert np.allclose(ms_output[0].asnumpy(), np_output)
|
|
|
|
|
2021-02-10 05:57:00 +08:00
|
|
|
|
|
|
|
@pytest.mark.level0
|
|
|
|
@pytest.mark.platform_x86_gpu_training
|
|
|
|
@pytest.mark.env_onecard
|
|
|
|
def test_topk_big_2d():
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
2020-07-15 19:51:30 +08:00
|
|
|
x_np = np.random.rand(512, 1024).astype(np.float32)
|
|
|
|
k = 512
|
|
|
|
ms_output = P.TopK(True)(Tensor(x_np), k)
|
|
|
|
np_output = np.sort(x_np, axis=-1)[..., ::-1][..., 0:k]
|
|
|
|
assert np.allclose(ms_output[0].asnumpy(), np_output)
|
|
|
|
|
|
|
|
# sorted elements num greater than max thread per block
|
2021-02-10 05:57:00 +08:00
|
|
|
x_np = np.random.rand(128, 2048).astype(np.float32)
|
2020-07-15 19:51:30 +08:00
|
|
|
k = 1
|
|
|
|
ms_output = P.TopK(True)(Tensor(x_np), k)
|
|
|
|
np_output = np.sort(x_np, axis=-1)[..., ::-1][..., 0:k]
|
|
|
|
assert np.allclose(ms_output[0].asnumpy(), np_output)
|
|
|
|
|
2021-02-10 05:57:00 +08:00
|
|
|
x_np = np.random.rand(32, 2048).astype(np.float32)
|
2020-07-15 19:51:30 +08:00
|
|
|
k = 2048
|
|
|
|
ms_output = P.TopK(True)(Tensor(x_np), k)
|
|
|
|
np_output = np.sort(x_np, axis=-1)[..., ::-1][..., 0:k]
|
|
|
|
assert np.allclose(ms_output[0].asnumpy(), np_output)
|
|
|
|
|
|
|
|
# sorted elements num greater than max share memory per block
|
2021-02-10 05:57:00 +08:00
|
|
|
x_np = np.random.rand(16, 40960).astype(np.float32)
|
2020-07-15 19:51:30 +08:00
|
|
|
k = 1
|
|
|
|
ms_output = P.TopK(True)(Tensor(x_np), k)
|
|
|
|
np_output = np.sort(x_np, axis=-1)[..., ::-1][..., 0:k]
|
|
|
|
assert np.allclose(ms_output[0].asnumpy(), np_output)
|
|
|
|
|
2021-02-10 05:57:00 +08:00
|
|
|
|
|
|
|
@pytest.mark.level0
|
|
|
|
@pytest.mark.platform_x86_gpu_training
|
|
|
|
@pytest.mark.env_onecard
|
|
|
|
def test_topk_big_k():
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
|
|
|
x_np = np.random.rand(8, 40960).astype(np.float32)
|
|
|
|
k = 4096
|
2020-07-15 19:51:30 +08:00
|
|
|
ms_output = P.TopK(True)(Tensor(x_np), k)
|
|
|
|
np_output = np.sort(x_np, axis=-1)[..., ::-1][..., 0:k]
|
|
|
|
assert np.allclose(ms_output[0].asnumpy(), np_output)
|
|
|
|
|
2021-02-10 05:57:00 +08:00
|
|
|
|
|
|
|
@pytest.mark.level0
|
|
|
|
@pytest.mark.platform_x86_gpu_training
|
|
|
|
@pytest.mark.env_onecard
|
|
|
|
def test_topk_1d():
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
|
|
|
x_np = np.random.rand(12).astype(np.float32)
|
|
|
|
k = 4
|
|
|
|
ms_output = P.TopK(True)(Tensor(x_np), k)
|
|
|
|
np_output = np.sort(x_np)[::-1][0:k]
|
|
|
|
|
|
|
|
assert np.allclose(ms_output[0].asnumpy(), np_output)
|
|
|
|
x_np = np.random.rand(1200).astype(np.float32)
|
|
|
|
k = 256
|
|
|
|
ms_output = P.TopK(True)(Tensor(x_np), k)
|
|
|
|
np_output = np.sort(x_np)[::-1][0:k]
|
|
|
|
assert np.allclose(ms_output[0].asnumpy(), np_output)
|
|
|
|
|
|
|
|
x_np = np.random.rand(250000).astype(np.float32)
|
|
|
|
k = 2000
|
|
|
|
ms_output = P.TopK(True)(Tensor(x_np), k)
|
|
|
|
np_output = np.sort(x_np)[::-1][0:k]
|
|
|
|
assert np.allclose(ms_output[0].asnumpy(), np_output)
|
|
|
|
|
|
|
|
x_np = np.random.rand(10240).astype(np.float32)
|
|
|
|
k = 4096
|
|
|
|
ms_output = P.TopK(True)(Tensor(x_np), k)
|
|
|
|
np_output = np.sort(x_np)[::-1][0:k]
|
|
|
|
assert np.allclose(ms_output[0].asnumpy(), np_output)
|
|
|
|
|
|
|
|
x_np = np.random.rand(720).astype(np.float32)
|
|
|
|
k = 720
|
|
|
|
ms_output = P.TopK(True)(Tensor(x_np), k)
|
|
|
|
np_output = np.sort(x_np)[::-1][0:k]
|
|
|
|
assert np.allclose(ms_output[0].asnumpy()[:k], np_output)
|