mindspore/tests/st/ops/gpu/test_gelu_op.py

107 lines
2.7 KiB
Python
Raw Normal View History

2020-05-07 15:39:27 +08:00
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
2020-05-18 16:42:35 +08:00
import numpy as np
2020-05-07 15:39:27 +08:00
import pytest
2020-05-18 16:42:35 +08:00
import mindspore.context as context
import mindspore.nn as nn
2020-05-07 15:39:27 +08:00
from mindspore import Tensor
from mindspore.ops import operations as P
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
2020-05-18 10:31:46 +08:00
2020-05-07 15:39:27 +08:00
class GeluNet(nn.Cell):
def __init__(self):
super(GeluNet, self).__init__()
self.gelu = P.GeLU()
2020-05-07 15:39:27 +08:00
def construct(self, x):
return self.gelu(x)
def GeluCompute(x):
return 0.5 * x * (1.0 + np.tanh(np.sqrt(2 / np.pi) * (x + 0.044715 * x * x * x)))
2020-05-18 10:31:46 +08:00
2020-05-07 15:39:27 +08:00
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_gelu_1d():
x_np = np.random.random((50,)).astype(np.float32)
y_np = GeluCompute(x_np)
x_ms = Tensor(x_np)
net = GeluNet()
y_ms = net(x_ms)
assert np.allclose(y_np, y_ms.asnumpy())
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_gelu_2d():
x_np = np.random.random((50, 40)).astype(np.float32)
y_np = GeluCompute(x_np)
x_ms = Tensor(x_np)
net = GeluNet()
y_ms = net(x_ms)
assert np.allclose(y_np, y_ms.asnumpy())
2020-05-18 10:31:46 +08:00
2020-05-07 15:39:27 +08:00
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_gelu_4d():
x_np = np.random.random((32, 3, 224, 224)).astype(np.float32)
y_np = GeluCompute(x_np)
x_ms = Tensor(x_np)
net = GeluNet()
y_ms = net(x_ms)
assert np.allclose(y_np, y_ms.asnumpy())
2020-05-18 10:31:46 +08:00
2020-05-07 15:39:27 +08:00
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_gelu_neg():
x_np = np.random.random((32, 3, 224, 224)).astype(np.float32) * -1
y_np = GeluCompute(x_np)
x_ms = Tensor(x_np)
net = GeluNet()
y_ms = net(x_ms)
assert np.allclose(y_np, y_ms.asnumpy())
2020-06-18 19:33:27 +08:00
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_gelu_4d_fp16():
x_np = np.random.random((32, 3, 224, 224)).astype(np.float16)
y_np = GeluCompute(x_np)
x_ms = Tensor(x_np)
net = GeluNet()
y_ms = net(x_ms)
assert np.allclose(y_np, y_ms.asnumpy(), rtol=1e-3)