mindspore/tests/st/ops/gpu/test_dynamic_shape_op.py

118 lines
3.7 KiB
Python
Raw Normal View History

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
from mindspore import Tensor
from mindspore.ops import operations as P
from mindspore.ops.operations import _inner_ops as inner
import mindspore.nn as nn
import mindspore.context as context
class DynamicShapeNet(nn.Cell):
def __init__(self):
super(DynamicShapeNet, self).__init__()
self.convert_to_dynamic_shape_op = inner.GpuConvertToDynamicShape()
self.dynamic_shape_op = P.DynamicShape()
def construct(self, x):
x_dynamic_shape = self.convert_to_dynamic_shape_op(x)
return self.dynamic_shape_op(x_dynamic_shape)
def dynamic_shape(np_type):
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
dynamic_shape_net = DynamicShapeNet()
shape = (1,)
x = Tensor(np.zeros(shape).astype(np_type))
ms_out = dynamic_shape_net(x).asnumpy()
expected = np.array(shape)
np.testing.assert_array_equal(ms_out, expected)
shape = (7,)
x = Tensor(np.zeros(shape).astype(np_type))
ms_out = dynamic_shape_net(x).asnumpy()
expected = np.array(shape)
np.testing.assert_array_equal(ms_out, expected)
shape = (1, 1)
x = Tensor(np.zeros(shape).astype(np_type))
ms_out = dynamic_shape_net(x).asnumpy()
expected = np.array(shape)
np.testing.assert_array_equal(ms_out, expected)
shape = (1, 7)
x = Tensor(np.zeros(shape).astype(np_type))
ms_out = dynamic_shape_net(x).asnumpy()
expected = np.array(shape)
np.testing.assert_array_equal(ms_out, expected)
shape = (3, 1)
x = Tensor(np.zeros(shape).astype(np_type))
ms_out = dynamic_shape_net(x).asnumpy()
expected = np.array(shape)
np.testing.assert_array_equal(ms_out, expected)
shape = (2, 4)
x = Tensor(np.zeros(shape).astype(np_type))
ms_out = dynamic_shape_net(x).asnumpy()
expected = np.array(shape)
np.testing.assert_array_equal(ms_out, expected)
shape = (1, 1, 1)
x = Tensor(np.zeros(shape).astype(np_type))
ms_out = dynamic_shape_net(x).asnumpy()
expected = np.array(shape)
np.testing.assert_array_equal(ms_out, expected)
shape = (1, 5, 3)
x = Tensor(np.zeros(shape).astype(np_type))
ms_out = dynamic_shape_net(x).asnumpy()
expected = np.array(shape)
np.testing.assert_array_equal(ms_out, expected)
shape = (2, 3, 1, 3, 1)
x = Tensor(np.zeros(shape).astype(np_type))
ms_out = dynamic_shape_net(x).asnumpy()
expected = np.array(shape)
np.testing.assert_array_equal(ms_out, expected)
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_dynamic_shape_int32():
dynamic_shape(np.int32)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_dynamic_shape_float16():
dynamic_shape(np.float16)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_dynamic_shape_float32():
dynamic_shape(np.float32)
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_dynamic_shape_bool():
dynamic_shape(np.bool)