2020-05-14 17:02:27 +08:00
|
|
|
import numpy as np
|
|
|
|
import mindspore.nn as nn
|
|
|
|
import mindspore.ops.operations as P
|
|
|
|
from mindspore import context
|
|
|
|
from mindspore.ops import composite as C
|
|
|
|
from mindspore.common import dtype as mstype
|
|
|
|
from mindspore import context, Tensor, ParameterTuple
|
|
|
|
from mindspore.common.initializer import TruncatedNormal
|
|
|
|
from mindspore.nn import Dense, WithLossCell, SoftmaxCrossEntropyWithLogits, Momentum
|
|
|
|
|
|
|
|
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
|
|
|
|
|
|
|
|
|
|
|
|
def conv(in_channels, out_channels, kernel_size, stride=1, padding=0):
|
|
|
|
"""weight initial for conv layer"""
|
|
|
|
weight = weight_variable()
|
|
|
|
return nn.Conv2d(in_channels, out_channels,
|
|
|
|
kernel_size=kernel_size, stride=stride, padding=padding,
|
|
|
|
weight_init=weight, has_bias=False, pad_mode="valid")
|
|
|
|
|
|
|
|
def fc_with_initialize(input_channels, out_channels):
|
|
|
|
"""weight initial for fc layer"""
|
|
|
|
weight = weight_variable()
|
|
|
|
bias = weight_variable()
|
|
|
|
return nn.Dense(input_channels, out_channels, weight, bias)
|
|
|
|
|
|
|
|
def weight_variable():
|
|
|
|
"""weight initial"""
|
|
|
|
return TruncatedNormal(0.02)
|
|
|
|
|
|
|
|
def cell_hook_function(cell_id, grad_input, grad_output):
|
|
|
|
print(cell_id)
|
2020-05-27 20:34:07 +08:00
|
|
|
assert(grad_output[0].asnumpy().shape == (32, 6, 14, 14))
|
|
|
|
assert(grad_input[0].asnumpy().shape == (32, 16, 10, 10))
|
2020-05-14 17:02:27 +08:00
|
|
|
|
|
|
|
|
|
|
|
def var_hook_function(grad_out):
|
|
|
|
print("grad:", grad_out)
|
2020-05-27 20:34:07 +08:00
|
|
|
assert(grad_out[0].asnumpy().shape == (32, 120))
|
2020-05-14 17:02:27 +08:00
|
|
|
|
|
|
|
|
|
|
|
class LeNet5(nn.Cell):
|
|
|
|
"""
|
|
|
|
Lenet network
|
|
|
|
Args:
|
|
|
|
num_class (int): Num classes. Default: 10.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Tensor, output tensor
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
>>> LeNet(num_class=10)
|
|
|
|
"""
|
|
|
|
def __init__(self, num_class=10):
|
|
|
|
super(LeNet5, self).__init__()
|
|
|
|
self.num_class = num_class
|
|
|
|
self.batch_size = 32
|
|
|
|
self.conv1 = conv(1, 6, 5)
|
|
|
|
self.conv2 = conv(6, 16, 5)
|
|
|
|
self.conv2.register_backward_hook(cell_hook_function)
|
|
|
|
self.fc1 = fc_with_initialize(16 * 5 * 5, 120)
|
|
|
|
self.fc2 = fc_with_initialize(120, 84)
|
|
|
|
self.fc3 = fc_with_initialize(84, self.num_class)
|
|
|
|
self.relu = nn.ReLU()
|
|
|
|
self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
|
|
|
|
self.reshape = P.Reshape()
|
|
|
|
self.hook = P.HookBackward(var_hook_function)
|
|
|
|
|
|
|
|
def construct(self, x):
|
|
|
|
x = self.conv1(x)
|
|
|
|
x = self.relu(x)
|
|
|
|
x = self.max_pool2d(x)
|
|
|
|
x = self.conv2(x)
|
|
|
|
x = self.relu(x)
|
|
|
|
x = self.max_pool2d(x)
|
|
|
|
x = self.reshape(x, (self.batch_size, -1))
|
|
|
|
x = self.fc1(x)
|
|
|
|
x = self.hook(x)
|
|
|
|
x = self.relu(x)
|
|
|
|
x = self.fc2(x)
|
|
|
|
x = self.relu(x)
|
|
|
|
x = self.fc3(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
class GradWrap(nn.Cell):
|
|
|
|
""" GradWrap definition """
|
|
|
|
def __init__(self, network):
|
|
|
|
super(GradWrap, self).__init__(auto_prefix=False)
|
|
|
|
self.network = network
|
|
|
|
self.weights = ParameterTuple(filter(lambda x: x.requires_grad, network.get_parameters()))
|
|
|
|
|
|
|
|
def construct(self, x, label):
|
|
|
|
weights = self.weights
|
|
|
|
return C.GradOperation('get_by_list', get_by_list=True)(self.network, weights)(x, label)
|
|
|
|
|
|
|
|
def test_hook():
|
|
|
|
net = LeNet5()
|
|
|
|
optimizer = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), 0.1, 0.9)
|
|
|
|
criterion = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=False)
|
|
|
|
net_with_criterion = WithLossCell(net, criterion)
|
|
|
|
train_network = GradWrap(net_with_criterion)
|
|
|
|
train_network.set_train()
|
|
|
|
|
|
|
|
input_data = Tensor(np.ones([net.batch_size, 1, 32, 32]).astype(np.float32) * 0.01)
|
|
|
|
label = Tensor(np.ones([net.batch_size, net.num_class]).astype(np.float32))
|
|
|
|
output = net(Tensor(input_data))
|
|
|
|
loss_output = criterion(output, label)
|
|
|
|
grads = train_network(input_data, label)
|
|
|
|
success = optimizer(grads)
|
|
|
|
print(loss_output.asnumpy().shape)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class MulAdd(nn.Cell):
|
|
|
|
def __init__(self):
|
|
|
|
super(MulAdd, self).__init__()
|
|
|
|
|
|
|
|
def construct(self, x, y):
|
|
|
|
return 2 * x + y
|
|
|
|
|
|
|
|
def bprop(self, x, y, out, dout):
|
|
|
|
assert(x == 1)
|
|
|
|
assert(y == 2)
|
|
|
|
assert(out == 4)
|
|
|
|
assert(dout == 1)
|
|
|
|
return 3 * dout, 2 * y
|
|
|
|
|
|
|
|
def test_custom_bprop():
|
|
|
|
mul_add = MulAdd()
|
|
|
|
mul_add.bprop_debug = True
|
|
|
|
assert C.grad_all(mul_add)(1, 2) == (3, 4)
|