2020-03-31 15:40:43 +08:00
|
|
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
import numpy as np
|
2020-05-18 16:42:35 +08:00
|
|
|
|
2020-03-31 15:40:43 +08:00
|
|
|
import mindspore as ms
|
|
|
|
from mindspore import context, Tensor, Parameter
|
2020-05-18 16:42:35 +08:00
|
|
|
from mindspore.common.api import _executor
|
2020-03-31 15:40:43 +08:00
|
|
|
from mindspore.nn import Cell, TrainOneStepCell, Momentum
|
|
|
|
from mindspore.ops import operations as P
|
|
|
|
|
|
|
|
|
|
|
|
class Net(Cell):
|
|
|
|
def __init__(self, mul_weight, strategy1=None, strategy2=None):
|
|
|
|
super().__init__()
|
|
|
|
self.mul = P.Mul().set_strategy(strategy1)
|
|
|
|
self.neg = P.Neg().set_strategy(strategy2)
|
|
|
|
self.mul_weight = Parameter(mul_weight, "w1")
|
|
|
|
|
|
|
|
def construct(self, x, b):
|
|
|
|
out = self.mul(x, self.mul_weight)
|
|
|
|
out = self.neg(out)
|
|
|
|
return out
|
|
|
|
|
|
|
|
|
|
|
|
_x = Tensor(np.ones([128, 64, 32]), dtype=ms.float32)
|
|
|
|
_w1 = Tensor(np.ones([128, 64, 32]), dtype=ms.float32)
|
|
|
|
_b = Tensor(np.ones([128, 64, 32]), dtype=ms.float32)
|
|
|
|
|
|
|
|
|
2020-05-22 09:13:09 +08:00
|
|
|
def compile_net(net):
|
2020-03-31 15:40:43 +08:00
|
|
|
optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
|
|
|
train_net = TrainOneStepCell(net, optimizer)
|
2020-05-07 10:40:59 +08:00
|
|
|
train_net.set_auto_parallel()
|
2020-05-18 10:31:46 +08:00
|
|
|
_executor.compile(train_net, _x, _b)
|
2020-03-31 15:40:43 +08:00
|
|
|
context.reset_auto_parallel_context()
|
|
|
|
|
|
|
|
|
|
|
|
def test_neg_data_parallel():
|
|
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
|
|
|
|
strategy1 = ((16, 1, 1), (16, 1, 1))
|
2020-05-18 10:31:46 +08:00
|
|
|
strategy2 = ((16, 1, 1),)
|
2020-03-31 15:40:43 +08:00
|
|
|
net = Net(_w1, strategy1, strategy2)
|
2020-05-22 09:13:09 +08:00
|
|
|
compile_net(net)
|
2020-03-31 15:40:43 +08:00
|
|
|
|
|
|
|
|
|
|
|
def test_neg_model_parallel():
|
|
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
|
|
|
|
strategy1 = ((1, 1, 16), (1, 1, 16))
|
2020-05-18 10:31:46 +08:00
|
|
|
strategy2 = ((1, 1, 16),)
|
2020-03-31 15:40:43 +08:00
|
|
|
net = Net(_w1, strategy1, strategy2)
|
2020-05-22 09:13:09 +08:00
|
|
|
compile_net(net)
|
2020-03-31 15:40:43 +08:00
|
|
|
|
|
|
|
|
|
|
|
def test_neg_hybrid_parallel():
|
|
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
|
|
|
|
strategy1 = ((2, 2, 4), (2, 2, 4))
|
2020-05-18 10:31:46 +08:00
|
|
|
strategy2 = ((2, 2, 4),)
|
2020-03-31 15:40:43 +08:00
|
|
|
net = Net(_w1, strategy1, strategy2)
|
2020-05-22 09:13:09 +08:00
|
|
|
compile_net(net)
|
2020-03-31 15:40:43 +08:00
|
|
|
|
|
|
|
|
|
|
|
def test_neg_auto_parallel():
|
|
|
|
context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=16, global_rank=0)
|
|
|
|
net = Net(_w1)
|
2020-05-22 09:13:09 +08:00
|
|
|
compile_net(net)
|
2020-03-31 15:40:43 +08:00
|
|
|
|
|
|
|
|
|
|
|
def test_neg_repeat_calc():
|
|
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
|
|
|
|
strategy1 = ((2, 2, 4), (2, 2, 4))
|
2020-05-18 10:31:46 +08:00
|
|
|
strategy2 = ((1, 2, 2),)
|
2020-03-31 15:40:43 +08:00
|
|
|
net = Net(_w1, strategy1, strategy2)
|
2020-05-22 09:13:09 +08:00
|
|
|
compile_net(net)
|