2020-03-27 14:49:12 +08:00
|
|
|
# Copyright 2019 Huawei Technologies Co., Ltd
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
import numpy as np
|
2020-05-18 16:42:35 +08:00
|
|
|
|
2020-03-27 14:49:12 +08:00
|
|
|
import mindspore.context as context
|
2020-05-18 16:42:35 +08:00
|
|
|
import mindspore.nn as nn
|
|
|
|
from mindspore import Tensor, Parameter
|
2020-03-27 14:49:12 +08:00
|
|
|
from mindspore.common.api import _executor
|
2020-05-18 16:42:35 +08:00
|
|
|
from mindspore.communication.management import init
|
2020-03-27 14:49:12 +08:00
|
|
|
from mindspore.nn import Dense
|
|
|
|
from mindspore.nn import Momentum
|
2020-05-18 16:42:35 +08:00
|
|
|
from mindspore.nn import TrainOneStepCell, WithLossCell
|
2020-03-27 14:49:12 +08:00
|
|
|
from mindspore.ops import operations as P
|
|
|
|
from mindspore.train.parallel_utils import ParallelMode
|
|
|
|
|
|
|
|
|
|
|
|
class Net(nn.Cell):
|
|
|
|
def __init__(self, input_channel, out_channel):
|
|
|
|
super(Net, self).__init__()
|
|
|
|
weight_init1 = np.ones([64, 128]).astype(np.float32)
|
|
|
|
weight_init2 = np.ones([32, 64]).astype(np.float32)
|
|
|
|
self.weight1 = Parameter(Tensor(weight_init1), "loss_weight1", layerwise_parallel=True)
|
|
|
|
self.weight2 = Parameter(Tensor(weight_init2), "loss_weight2", layerwise_parallel=True)
|
|
|
|
self.fc = P.MatMul(transpose_b=True)
|
|
|
|
self.dense = Dense(input_channel, out_channel)
|
|
|
|
|
|
|
|
def construct(self, x):
|
|
|
|
x = self.dense(x)
|
|
|
|
x = self.fc(x, self.weight1)
|
|
|
|
x = self.fc(x, self.weight2)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
def test_dense_gen_graph():
|
|
|
|
context.set_context(mode=context.GRAPH_MODE)
|
2020-08-20 09:36:06 +08:00
|
|
|
context.reset_auto_parallel_context()
|
|
|
|
context.set_auto_parallel_context(parallel_mode=ParallelMode.HYBRID_PARALLEL, mirror_mean=True, device_num=8)
|
2020-03-27 14:49:12 +08:00
|
|
|
init()
|
|
|
|
network = Net(512, 128)
|
|
|
|
|
|
|
|
loss_fn = nn.SoftmaxCrossEntropyWithLogits()
|
|
|
|
optimizer = Momentum(filter(lambda x: x.requires_grad, network.get_parameters()),
|
|
|
|
learning_rate=0.1,
|
|
|
|
momentum=0.9)
|
|
|
|
network = WithLossCell(network, loss_fn)
|
|
|
|
network = TrainOneStepCell(network, optimizer)
|
|
|
|
|
|
|
|
predict = Tensor(np.ones([64, 512]).astype(np.float32) * 0.01)
|
|
|
|
label = Tensor(np.zeros([64, 32]).astype(np.float32))
|
2020-05-07 10:40:59 +08:00
|
|
|
network.set_auto_parallel()
|
2020-03-27 14:49:12 +08:00
|
|
|
_executor.compile(network, predict, label)
|