2020-08-25 21:09:38 +08:00
|
|
|
|
# Contents
|
2020-06-19 20:33:31 +08:00
|
|
|
|
|
2020-08-25 21:09:38 +08:00
|
|
|
|
- [LeNet Description](#lenet-description)
|
|
|
|
|
- [Model Architecture](#model-architecture)
|
|
|
|
|
- [Dataset](#dataset)
|
|
|
|
|
- [Environment Requirements](#environment-requirements)
|
|
|
|
|
- [Quick Start](#quick-start)
|
|
|
|
|
- [Script Description](#script-description)
|
|
|
|
|
- [Script and Sample Code](#script-and-sample-code)
|
|
|
|
|
- [Script Parameters](#script-parameters)
|
|
|
|
|
- [Training Process](#training-process)
|
|
|
|
|
- [Training](#training)
|
|
|
|
|
- [Evaluation Process](#evaluation-process)
|
|
|
|
|
- [Evaluation](#evaluation)
|
|
|
|
|
- [Model Description](#model-description)
|
|
|
|
|
- [Performance](#performance)
|
|
|
|
|
- [Evaluation Performance](#evaluation-performance)
|
|
|
|
|
- [ModelZoo Homepage](#modelzoo-homepage)
|
2020-06-19 20:33:31 +08:00
|
|
|
|
|
|
|
|
|
|
2020-08-25 21:09:38 +08:00
|
|
|
|
# [LeNet Description](#contents)
|
2020-06-19 20:33:31 +08:00
|
|
|
|
|
2020-08-25 21:09:38 +08:00
|
|
|
|
LeNet was proposed in 1998, a typical convolutional neural network. It was used for digit recognition and got big success.
|
2020-06-19 20:33:31 +08:00
|
|
|
|
|
2020-08-25 21:09:38 +08:00
|
|
|
|
[Paper](https://ieeexplore.ieee.org/document/726791): Y.Lecun, L.Bottou, Y.Bengio, P.Haffner. Gradient-Based Learning Applied to Document Recognition. *Proceedings of the IEEE*. 1998.
|
2020-06-19 20:33:31 +08:00
|
|
|
|
|
2020-08-25 21:09:38 +08:00
|
|
|
|
This is the quantitative network of LeNet.
|
2020-06-20 10:16:39 +08:00
|
|
|
|
|
2020-08-25 21:09:38 +08:00
|
|
|
|
# [Model Architecture](#contents)
|
2020-06-20 10:16:39 +08:00
|
|
|
|
|
2020-08-25 21:09:38 +08:00
|
|
|
|
LeNet is very simple, which contains 5 layers. The layer composition consists of 2 convolutional layers and 3 fully connected layers.
|
2020-06-20 10:16:39 +08:00
|
|
|
|
|
2020-08-25 21:09:38 +08:00
|
|
|
|
# [Dataset](#contents)
|
2020-06-20 10:16:39 +08:00
|
|
|
|
|
2020-08-25 21:09:38 +08:00
|
|
|
|
Dataset used: [MNIST](<http://yann.lecun.com/exdb/mnist/>)
|
2020-06-20 10:16:39 +08:00
|
|
|
|
|
2020-08-25 21:09:38 +08:00
|
|
|
|
- Dataset size 52.4M 60,000 28*28 in 10 classes
|
|
|
|
|
- Train 60,000 images
|
|
|
|
|
- Test 10,000 images
|
|
|
|
|
- Data format binary files
|
|
|
|
|
- Note Data will be processed in dataset.py
|
2020-06-20 10:16:39 +08:00
|
|
|
|
|
2020-08-25 21:09:38 +08:00
|
|
|
|
- The directory structure is as follows:
|
2020-06-19 20:33:31 +08:00
|
|
|
|
|
|
|
|
|
```
|
2020-08-25 21:09:38 +08:00
|
|
|
|
└─Data
|
2020-06-19 20:33:31 +08:00
|
|
|
|
├─test
|
|
|
|
|
│ t10k-images.idx3-ubyte
|
|
|
|
|
│ t10k-labels.idx1-ubyte
|
2020-08-25 21:09:38 +08:00
|
|
|
|
│
|
2020-06-19 20:33:31 +08:00
|
|
|
|
└─train
|
|
|
|
|
train-images.idx3-ubyte
|
|
|
|
|
train-labels.idx1-ubyte
|
|
|
|
|
```
|
|
|
|
|
|
2020-08-25 21:09:38 +08:00
|
|
|
|
# [Environment Requirements](#contents)
|
2020-06-20 10:16:39 +08:00
|
|
|
|
|
2020-08-25 21:09:38 +08:00
|
|
|
|
- Hardware:Ascend
|
|
|
|
|
- Prepare hardware environment with Ascend
|
|
|
|
|
- Framework
|
2020-09-10 20:44:28 +08:00
|
|
|
|
- [MindSpore](https://www.mindspore.cn/install/en)
|
2020-08-25 21:09:38 +08:00
|
|
|
|
- For more information, please check the resources below:
|
2020-09-19 17:36:35 +08:00
|
|
|
|
- [MindSpore Tutorials](https://www.mindspore.cn/tutorial/training/en/master/index.html)
|
|
|
|
|
- [MindSpore Python API](https://www.mindspore.cn/doc/api_python/en/master/index.html)
|
2020-06-20 10:16:39 +08:00
|
|
|
|
|
2020-08-25 21:09:38 +08:00
|
|
|
|
# [Quick Start](#contents)
|
2020-06-20 10:16:39 +08:00
|
|
|
|
|
2020-08-25 21:09:38 +08:00
|
|
|
|
After installing MindSpore via the official website, you can start training and evaluation as follows:
|
2020-06-20 10:16:39 +08:00
|
|
|
|
|
|
|
|
|
```python
|
2020-08-25 21:09:38 +08:00
|
|
|
|
# enter ../lenet directory and train lenet network,then a '.ckpt' file will be generated.
|
|
|
|
|
sh run_standalone_train_ascend.sh [DATA_PATH]
|
|
|
|
|
# enter lenet dir, train LeNet-Quant
|
|
|
|
|
python train.py --device_target=Ascend --data_path=[DATA_PATH] --ckpt_path=[CKPT_PATH] --dataset_sink_mode=True
|
|
|
|
|
#evaluate LeNet-Quant
|
|
|
|
|
python eval.py --device_target=Ascend --data_path=[DATA_PATH] --ckpt_path=[CKPT_PATH] --dataset_sink_mode=True
|
|
|
|
|
```
|
2020-06-20 10:16:39 +08:00
|
|
|
|
|
2020-08-25 21:09:38 +08:00
|
|
|
|
# [Script Description](#contents)
|
2020-06-20 10:16:39 +08:00
|
|
|
|
|
2020-08-25 21:09:38 +08:00
|
|
|
|
## [Script and Sample Code](#contents)
|
2020-06-20 10:16:39 +08:00
|
|
|
|
|
2020-08-25 21:09:38 +08:00
|
|
|
|
```
|
|
|
|
|
├── model_zoo
|
|
|
|
|
├── README.md // descriptions about all the models
|
|
|
|
|
├── lenet_quant
|
|
|
|
|
├── README.md // descriptions about LeNet-Quant
|
|
|
|
|
├── src
|
|
|
|
|
│ ├── config.py // parameter configuration
|
|
|
|
|
│ ├── dataset.py // creating dataset
|
|
|
|
|
│ ├── lenet_fusion.py // auto constructed quantitative network model of LeNet-Quant
|
|
|
|
|
│ ├── lenet_quant.py // manual constructed quantitative network model of LeNet-Quant
|
|
|
|
|
│ ├── loss_monitor.py //monitor of network's loss and other data
|
|
|
|
|
├── requirements.txt // package needed
|
|
|
|
|
├── train.py // training LeNet-Quant network with device Ascend
|
|
|
|
|
├── eval.py // evaluating LeNet-Quant network with device Ascend
|
|
|
|
|
```
|
2020-06-20 10:16:39 +08:00
|
|
|
|
|
2020-08-25 21:09:38 +08:00
|
|
|
|
## [Script Parameters](#contents)
|
2020-06-20 10:16:39 +08:00
|
|
|
|
|
|
|
|
|
```python
|
2020-08-25 21:09:38 +08:00
|
|
|
|
Major parameters in train.py and config.py as follows:
|
|
|
|
|
|
|
|
|
|
--data_path: The absolute full path to the train and evaluation datasets.
|
|
|
|
|
--epoch_size: Total training epochs.
|
|
|
|
|
--batch_size: Training batch size.
|
|
|
|
|
--image_height: Image height used as input to the model.
|
|
|
|
|
--image_width: Image width used as input the model.
|
|
|
|
|
--device_target: Device where the code will be implemented. Optional values
|
|
|
|
|
are "Ascend", "GPU", "CPU".Only "Ascend" is supported now.
|
|
|
|
|
--ckpt_path: The absolute full path to the checkpoint file saved
|
|
|
|
|
after training.
|
|
|
|
|
--data_path: Path where the dataset is saved
|
2020-06-20 10:16:39 +08:00
|
|
|
|
```
|
|
|
|
|
|
2020-08-25 21:09:38 +08:00
|
|
|
|
## [Training Process](#contents)
|
2020-06-20 10:16:39 +08:00
|
|
|
|
|
2020-08-25 21:09:38 +08:00
|
|
|
|
### Training
|
2020-06-19 20:33:31 +08:00
|
|
|
|
|
2020-08-25 21:09:38 +08:00
|
|
|
|
```
|
|
|
|
|
python train.py --device_target=Ascend --dataset_path=/home/datasets/MNIST --dataset_sink_mode=True > log.txt 2>&1 &
|
2020-06-19 20:33:31 +08:00
|
|
|
|
```
|
|
|
|
|
|
2020-08-25 21:09:38 +08:00
|
|
|
|
After training, the loss value will be achieved as follows:
|
2020-06-19 20:33:31 +08:00
|
|
|
|
|
2020-08-25 21:09:38 +08:00
|
|
|
|
```
|
|
|
|
|
# grep "Epoch " log.txt
|
|
|
|
|
Epoch: [ 1/ 10], step: [ 937/ 937], loss: [0.0081], avg loss: [0.0081], time: [11268.6832ms]
|
|
|
|
|
Epoch time: 11269.352, per step time: 12.027, avg loss: 0.008
|
|
|
|
|
Epoch: [ 2/ 10], step: [ 937/ 937], loss: [0.0496], avg loss: [0.0496], time: [3085.2389ms]
|
|
|
|
|
Epoch time: 3085.641, per step time: 3.293, avg loss: 0.050
|
|
|
|
|
Epoch: [ 3/ 10], step: [ 937/ 937], loss: [0.0017], avg loss: [0.0017], time: [3085.3510ms]
|
|
|
|
|
...
|
|
|
|
|
...
|
2020-06-20 10:16:39 +08:00
|
|
|
|
```
|
|
|
|
|
|
2020-08-25 21:09:38 +08:00
|
|
|
|
The model checkpoint will be saved in the current directory.
|
2020-06-20 10:16:39 +08:00
|
|
|
|
|
2020-08-25 21:09:38 +08:00
|
|
|
|
## [Evaluation Process](#contents)
|
2020-06-20 10:16:39 +08:00
|
|
|
|
|
2020-08-25 21:09:38 +08:00
|
|
|
|
### Evaluation
|
2020-06-20 10:16:39 +08:00
|
|
|
|
|
2020-08-25 21:09:38 +08:00
|
|
|
|
Before running the command below, please check the checkpoint path used for evaluation.
|
2020-06-20 10:16:39 +08:00
|
|
|
|
|
2020-08-25 21:09:38 +08:00
|
|
|
|
```
|
|
|
|
|
python eval.py --data_path Data --ckpt_path ckpt/checkpoint_lenet-1_937.ckpt > log.txt 2>&1 &
|
2020-06-19 20:33:31 +08:00
|
|
|
|
```
|
|
|
|
|
|
2020-08-25 21:09:38 +08:00
|
|
|
|
You can view the results through the file "log.txt". The accuracy of the test dataset will be as follows:
|
2020-06-19 20:33:31 +08:00
|
|
|
|
|
2020-08-25 21:09:38 +08:00
|
|
|
|
```
|
|
|
|
|
# grep "Accuracy: " log.txt
|
|
|
|
|
'Accuracy': 0.9842
|
2020-06-20 10:16:39 +08:00
|
|
|
|
```
|
|
|
|
|
|
2020-08-25 21:09:38 +08:00
|
|
|
|
# [Model Description](#contents)
|
2020-06-20 10:16:39 +08:00
|
|
|
|
|
2020-08-25 21:09:38 +08:00
|
|
|
|
## [Performance](#contents)
|
2020-06-19 20:33:31 +08:00
|
|
|
|
|
2020-08-25 21:09:38 +08:00
|
|
|
|
### Evaluation Performance
|
2020-06-20 10:16:39 +08:00
|
|
|
|
|
2020-08-25 21:09:38 +08:00
|
|
|
|
| Parameters | LeNet |
|
|
|
|
|
| -------------------------- | ----------------------------------------------------------- |
|
|
|
|
|
| Resource | Ascend 910 CPU 2.60GHz 56cores Memory 314G |
|
|
|
|
|
| uploaded Date | 06/09/2020 (month/day/year) |
|
|
|
|
|
| MindSpore Version | 0.5.0-beta |
|
|
|
|
|
| Dataset | MNIST |
|
|
|
|
|
| Training Parameters | epoch=10, steps=937, batch_size = 64, lr=0.01 |
|
|
|
|
|
| Optimizer | Momentum |
|
|
|
|
|
| Loss Function | Softmax Cross Entropy |
|
|
|
|
|
| outputs | probability |
|
|
|
|
|
| Loss | 0.002 |
|
|
|
|
|
| Speed |3.29 ms/step |
|
|
|
|
|
| Total time | 40s |
|
|
|
|
|
| Checkpoint for Fine tuning | 482k (.ckpt file) |
|
|
|
|
|
| Scripts | [scripts](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/lenet) |
|
2020-06-19 20:33:31 +08:00
|
|
|
|
|
2020-08-25 21:09:38 +08:00
|
|
|
|
# [Description of Random Situation](#contents)
|
2020-06-19 20:33:31 +08:00
|
|
|
|
|
2020-08-25 21:09:38 +08:00
|
|
|
|
In dataset.py, we set the seed inside “create_dataset" function.
|
2020-06-20 10:16:39 +08:00
|
|
|
|
|
2020-08-25 21:09:38 +08:00
|
|
|
|
# [ModelZoo Homepage](#contents)
|
|
|
|
|
Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo).
|