forked from mindspore-Ecosystem/mindspore
55 lines
1.9 KiB
Bash
55 lines
1.9 KiB
Bash
|
#!/bin/bash
|
||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
# ============================================================================
|
||
|
|
||
|
echo "=============================================================================================================="
|
||
|
echo "Please run the scipt as: "
|
||
|
echo "sh run_distribute_train.sh DEVICE_NUM EPOCH_SIZE MINDSPORE_HCCL_CONFIG_PATH"
|
||
|
echo "for example: sh run_distribute_train.sh 8 150 coco /data/hccl.json"
|
||
|
echo "It is better to use absolute path."
|
||
|
echo "The learning rate is 0.4 as default, if you want other lr, please change the value in this script."
|
||
|
echo "=============================================================================================================="
|
||
|
|
||
|
# Before start distribute train, first create mindrecord files.
|
||
|
python train.py --only_create_dataset=1
|
||
|
|
||
|
echo "After running the scipt, the network runs in the background. The log will be generated in LOGx/log.txt"
|
||
|
|
||
|
export RANK_SIZE=$1
|
||
|
EPOCH_SIZE=$2
|
||
|
DATASET=$3
|
||
|
export MINDSPORE_HCCL_CONFIG_PATH=$4
|
||
|
|
||
|
|
||
|
for((i=0;i<RANK_SIZE;i++))
|
||
|
do
|
||
|
export DEVICE_ID=$i
|
||
|
rm -rf LOG$i
|
||
|
mkdir ./LOG$i
|
||
|
cp *.py ./LOG$i
|
||
|
cd ./LOG$i || exit
|
||
|
export RANK_ID=$i
|
||
|
echo "start training for rank $i, device $DEVICE_ID"
|
||
|
env > env.log
|
||
|
python ../train.py \
|
||
|
--distribute=1 \
|
||
|
--lr=0.4 \
|
||
|
--dataset=$DATASET \
|
||
|
--device_num=$RANK_SIZE \
|
||
|
--device_id=$DEVICE_ID \
|
||
|
--epoch_size=$EPOCH_SIZE > log.txt 2>&1 &
|
||
|
cd ../
|
||
|
done
|