mindspore/serving/core/server.cc

290 lines
10 KiB
C++
Raw Normal View History

2020-06-21 14:37:27 +08:00
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "core/server.h"
#include <grpcpp/grpcpp.h>
#include <grpcpp/health_check_service_interface.h>
#include <grpcpp/ext/proto_server_reflection_plugin.h>
#include <string>
#include <map>
#include <vector>
#include <utility>
#include <memory>
2020-06-27 10:01:06 +08:00
#include <future>
2020-06-21 14:37:27 +08:00
#include "mindspore/ccsrc/utils/log_adapter.h"
#include "serving/ms_service.grpc.pb.h"
#include "core/util/option_parser.h"
#include "core/version_control/version_controller.h"
#include "mindspore/ccsrc/utils/context/ms_context.h"
#include "core/util/file_system_operation.h"
#include "graphengine/third_party/fwkacllib/inc/runtime/context.h"
using ms_serving::MSService;
using ms_serving::PredictReply;
using ms_serving::PredictRequest;
namespace mindspore {
namespace serving {
using MSTensorPtr = std::shared_ptr<inference::MSTensor>;
Status Session::CreatDeviceSession(const std::string &device, uint32_t device_id) {
2020-06-27 10:01:06 +08:00
session_ = inference::MSSession::CreateSession(device, device_id);
2020-06-21 14:37:27 +08:00
if (session_ == nullptr) {
MS_LOG(ERROR) << "Creat Session Failed";
return FAILED;
}
device_type_ = device;
return SUCCESS;
}
Session &Session::Instance() {
static Session instance;
return instance;
}
Status Session::Predict(const std::vector<MSTensorPtr> &inputs, inference::MultiTensor *outputs) {
if (last_graph_ == nullptr) {
MS_LOG(ERROR) << "the model has not loaded";
return FAILED;
}
if (session_ == nullptr) {
MS_LOG(ERROR) << "the inference session has not be initialized";
return FAILED;
}
std::lock_guard<std::mutex> lock(mutex_);
MS_LOG(INFO) << "run Predict";
*outputs = session_->RunGraph(graph_id_, inputs);
2020-06-27 10:01:06 +08:00
MS_LOG(INFO) << "run Predict finished";
2020-06-21 14:37:27 +08:00
return SUCCESS;
}
Status Session::Warmup(const MindSporeModelPtr model) {
if (session_ == nullptr) {
MS_LOG(ERROR) << "The CreatDeviceSession should be called, before warmup";
return FAILED;
}
std::lock_guard<std::mutex> lock(mutex_);
size_t size = 0;
std::string file_name = model->GetModelPath() + '/' + model->GetModelName();
char *graphBuf = ReadFile(file_name.c_str(), &size);
if (graphBuf == nullptr) {
2020-06-27 10:01:06 +08:00
MS_LOG(ERROR) << "Read model file failed, file name is " << file_name.c_str();
2020-06-21 14:37:27 +08:00
return FAILED;
}
last_graph_ = inference::LoadModel(graphBuf, size, device_type_);
2020-06-27 10:01:06 +08:00
if (last_graph_ == nullptr) {
MS_LOG(ERROR) << "Load graph model failed, file name is " << file_name.c_str();
return FAILED;
}
2020-06-21 14:37:27 +08:00
graph_id_ = session_->CompileGraph(last_graph_);
2020-06-27 10:01:06 +08:00
MS_LOG(INFO) << "Session Warmup finished";
2020-06-21 14:37:27 +08:00
return SUCCESS;
}
Status Session::Clear() {
session_ = nullptr;
return SUCCESS;
}
namespace {
2020-06-27 10:01:06 +08:00
static const uint32_t uint32max = 0x7FFFFFFF;
std::promise<void> exit_requested;
2020-06-21 14:37:27 +08:00
const std::map<ms_serving::DataType, TypeId> type2id_map{
{ms_serving::MS_UNKNOWN, TypeId::kNumberTypeBegin}, {ms_serving::MS_BOOL, TypeId::kNumberTypeBool},
{ms_serving::MS_INT8, TypeId::kNumberTypeInt8}, {ms_serving::MS_UINT8, TypeId::kNumberTypeUInt8},
{ms_serving::MS_INT16, TypeId::kNumberTypeInt16}, {ms_serving::MS_UINT16, TypeId::kNumberTypeUInt16},
{ms_serving::MS_INT32, TypeId::kNumberTypeInt32}, {ms_serving::MS_UINT32, TypeId::kNumberTypeUInt32},
{ms_serving::MS_INT64, TypeId::kNumberTypeInt64}, {ms_serving::MS_UINT64, TypeId::kNumberTypeUInt64},
{ms_serving::MS_FLOAT16, TypeId::kNumberTypeFloat16}, {ms_serving::MS_FLOAT32, TypeId::kNumberTypeFloat32},
{ms_serving::MS_FLOAT64, TypeId::kNumberTypeFloat64},
};
const std::map<TypeId, ms_serving::DataType> id2type_map{
{TypeId::kNumberTypeBegin, ms_serving::MS_UNKNOWN}, {TypeId::kNumberTypeBool, ms_serving::MS_BOOL},
{TypeId::kNumberTypeInt8, ms_serving::MS_INT8}, {TypeId::kNumberTypeUInt8, ms_serving::MS_UINT8},
{TypeId::kNumberTypeInt16, ms_serving::MS_INT16}, {TypeId::kNumberTypeUInt16, ms_serving::MS_UINT16},
{TypeId::kNumberTypeInt32, ms_serving::MS_INT32}, {TypeId::kNumberTypeUInt32, ms_serving::MS_UINT32},
{TypeId::kNumberTypeInt64, ms_serving::MS_INT64}, {TypeId::kNumberTypeUInt64, ms_serving::MS_UINT64},
{TypeId::kNumberTypeFloat16, ms_serving::MS_FLOAT16}, {TypeId::kNumberTypeFloat32, ms_serving::MS_FLOAT32},
{TypeId::kNumberTypeFloat64, ms_serving::MS_FLOAT64},
};
const std::map<ms_serving::DataType, size_t> length_map{
{ms_serving::MS_UNKNOWN, 0},
{ms_serving::MS_BOOL, sizeof(bool)},
{ms_serving::MS_INT8, sizeof(int8_t)},
{ms_serving::MS_UINT8, sizeof(uint8_t)},
{ms_serving::MS_INT16, sizeof(int16_t)},
{ms_serving::MS_UINT16, sizeof(uint16_t)},
{ms_serving::MS_INT32, sizeof(int32_t)},
{ms_serving::MS_UINT32, sizeof(uint32_t)},
{ms_serving::MS_INT64, sizeof(int64_t)},
{ms_serving::MS_UINT64, sizeof(uint64_t)},
{ms_serving::MS_FLOAT16, 2},
{ms_serving::MS_FLOAT32, 4},
{ms_serving::MS_FLOAT64, 8},
};
MSTensorPtr ServingTensor2MSTensor(const ms_serving::Tensor &tensor) {
std::vector<int> shape;
for (auto dim : tensor.tensor_shape().dims()) {
shape.push_back(static_cast<int>(dim));
}
auto iter = type2id_map.find(tensor.tensor_type());
if (iter == type2id_map.end()) {
MS_LOG(ERROR) << "input tensor type is wrong, type is " << tensor.tensor_type();
return nullptr;
}
TypeId type = iter->second;
auto ms_tensor = std::shared_ptr<inference::MSTensor>(inference::MSTensor::CreateTensor(type, shape));
2020-06-27 10:01:06 +08:00
memcpy_s(ms_tensor->MutableData(), ms_tensor->Size(), tensor.data().data(), tensor.data().size());
2020-06-21 14:37:27 +08:00
return ms_tensor;
}
ms_serving::Tensor MSTensor2ServingTensor(MSTensorPtr ms_tensor) {
ms_serving::Tensor tensor;
ms_serving::TensorShape shape;
for (auto dim : ms_tensor->shape()) {
shape.add_dims(dim);
}
*tensor.mutable_tensor_shape() = shape;
auto iter = id2type_map.find(ms_tensor->data_type());
if (iter == id2type_map.end()) {
MS_LOG(ERROR) << "input tensor type is wrong, type is " << tensor.tensor_type();
return tensor;
}
tensor.set_tensor_type(iter->second);
tensor.set_data(ms_tensor->MutableData(), ms_tensor->Size());
return tensor;
}
void ClearEnv() {
Session::Instance().Clear();
inference::ExitInference();
}
2020-06-27 10:01:06 +08:00
void HandleSignal(int sig) { exit_requested.set_value(); }
2020-06-21 14:37:27 +08:00
#ifdef ENABLE_D
static rtContext_t g_ctx = nullptr;
#endif
} // namespace
// Service Implement
class MSServiceImpl final : public MSService::Service {
grpc::Status Predict(grpc::ServerContext *context, const PredictRequest *request, PredictReply *reply) override {
std::lock_guard<std::mutex> lock(mutex_);
#ifdef ENABLE_D
if (g_ctx == nullptr) {
MS_LOG(ERROR) << "rtCtx is nullptr";
return grpc::Status::CANCELLED;
}
rtError_t rt_ret = rtCtxSetCurrent(g_ctx);
if (rt_ret != RT_ERROR_NONE) {
MS_LOG(ERROR) << "set Ascend rtCtx failed";
}
#endif
std::vector<MSTensorPtr> inputs;
inference::MultiTensor outputs;
for (int i = 0; i < request->data_size(); i++) {
auto input = ServingTensor2MSTensor(request->data(i));
if (input == nullptr) {
MS_LOG(ERROR) << "Tensor convert failed";
return grpc::Status::CANCELLED;
}
inputs.push_back(input);
}
auto res = Session::Instance().Predict(inputs, &outputs);
if (res != SUCCESS) {
return grpc::Status::CANCELLED;
}
for (const auto &tensor : outputs) {
*reply->add_result() = MSTensor2ServingTensor(tensor);
}
MS_LOG(INFO) << "Finish call service Eval";
return grpc::Status::OK;
}
grpc::Status Test(grpc::ServerContext *context, const PredictRequest *request, PredictReply *reply) override {
MS_LOG(INFO) << "TestService call";
return grpc::Status::OK;
}
std::mutex mutex_;
};
Status Server::BuildAndStart() {
// handle exit signal
signal(SIGINT, HandleSignal);
2020-07-01 14:52:34 +08:00
signal(SIGTERM, HandleSignal);
2020-06-21 14:37:27 +08:00
Status res;
auto option_args = Options::Instance().GetArgs();
std::string server_address = "0.0.0.0:" + std::to_string(option_args->grpc_port);
std::string model_path = option_args->model_path;
std::string model_name = option_args->model_name;
std::string device_type = option_args->device_type;
auto device_id = option_args->device_id;
res = Session::Instance().CreatDeviceSession(device_type, device_id);
if (res != SUCCESS) {
MS_LOG(ERROR) << "creat session failed";
ClearEnv();
return res;
}
VersionController version_controller(option_args->poll_model_wait_seconds, model_path, model_name);
res = version_controller.Run();
if (res != SUCCESS) {
MS_LOG(ERROR) << "load model failed";
ClearEnv();
return res;
}
#ifdef ENABLE_D
// set d context
rtContext_t ctx = nullptr;
rtError_t rt_ret = rtCtxGetCurrent(&ctx);
if (rt_ret != RT_ERROR_NONE || ctx == nullptr) {
MS_LOG(ERROR) << "the ascend device context is null";
2020-06-27 10:01:06 +08:00
ClearEnv();
2020-06-21 14:37:27 +08:00
return FAILED;
}
g_ctx = ctx;
#endif
2020-07-03 17:01:24 +08:00
MSServiceImpl ms_service;
2020-06-21 14:37:27 +08:00
grpc::EnableDefaultHealthCheckService(true);
grpc::reflection::InitProtoReflectionServerBuilderPlugin();
// Set the port is not reuseable
auto option = grpc::MakeChannelArgumentOption(GRPC_ARG_ALLOW_REUSEPORT, 0);
2020-07-01 14:52:34 +08:00
grpc::ServerBuilder serverBuilder;
serverBuilder.SetOption(std::move(option));
serverBuilder.SetMaxMessageSize(uint32max);
serverBuilder.AddListeningPort(server_address, grpc::InsecureServerCredentials());
2020-07-03 17:01:24 +08:00
serverBuilder.RegisterService(&ms_service);
2020-07-01 14:52:34 +08:00
std::unique_ptr<grpc::Server> server(serverBuilder.BuildAndStart());
2020-06-27 14:57:26 +08:00
if (server == nullptr) {
MS_LOG(ERROR) << "The serving server create failed";
ClearEnv();
return FAILED;
}
2020-06-27 10:01:06 +08:00
auto grpc_server_run = [&server]() { server->Wait(); };
std::thread serving_thread(grpc_server_run);
2020-07-01 14:52:34 +08:00
MS_LOG(INFO) << "MS Serving listening on " << server_address;
2020-06-27 10:01:06 +08:00
auto exit_future = exit_requested.get_future();
exit_future.wait();
ClearEnv();
server->Shutdown();
serving_thread.join();
2020-06-21 14:37:27 +08:00
return SUCCESS;
}
} // namespace serving
} // namespace mindspore