forked from mindspore-Ecosystem/mindspore
164 lines
6.7 KiB
Python
164 lines
6.7 KiB
Python
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
# ============================================================================
|
||
|
|
||
|
import numpy as np
|
||
|
import pytest
|
||
|
|
||
|
import mindspore.context as context
|
||
|
import mindspore.nn as nn
|
||
|
import mindspore as ms
|
||
|
import mindspore.ops.operations._grad_ops as P
|
||
|
from mindspore import Tensor
|
||
|
|
||
|
class GatherDGradNet(nn.Cell):
|
||
|
def __init__(self, dim=0):
|
||
|
super(GatherDGradNet, self).__init__()
|
||
|
self.gather_d_grad = P.GatherDGrad(dim)
|
||
|
|
||
|
def construct(self, index, grad):
|
||
|
return self.gather_d_grad(index, grad)
|
||
|
|
||
|
@pytest.mark.level0
|
||
|
@pytest.mark.platform_x86_gpu_training
|
||
|
@pytest.mark.env_onecard
|
||
|
def test_gather_grad_graph_int32_fp32():
|
||
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||
|
dim = 0
|
||
|
index = Tensor(np.array([[0, 1, 1, 0, 0], [1, 0, 0, 1, 1]]), ms.int32)
|
||
|
grad = Tensor(np.array([[0.9031, 0.0890, 0.2779, 0.3198, 0.5710],
|
||
|
[0.6949, 0.8439, 0.2003, 0.6868, 0.4437]]), ms.float32)
|
||
|
expect = np.array([[0.9031, 0.8439, 0.2003, 0.3198, 0.5710],
|
||
|
[0.6949, 0.0890, 0.2779, 0.6868, 0.4437]], np.float32)
|
||
|
net = GatherDGradNet(dim)
|
||
|
output = net(index, grad)
|
||
|
error = 1e-4
|
||
|
diff = output.asnumpy() - expect
|
||
|
assert np.all(diff < error)
|
||
|
|
||
|
@pytest.mark.level0
|
||
|
@pytest.mark.platform_x86_gpu_training
|
||
|
@pytest.mark.env_onecard
|
||
|
def test_gather_grad_graph_int64_fp32():
|
||
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||
|
dim = 0
|
||
|
index = Tensor(np.array([[0, 1, 1, 0, 0], [1, 0, 0, 1, 1]]), ms.int64)
|
||
|
grad = Tensor(np.array([[0.9031, 0.0890, 0.2779, 0.3198, 0.5710],
|
||
|
[0.6949, 0.8439, 0.2003, 0.6868, 0.4437]]), ms.float32)
|
||
|
expect = np.array([[0.9031, 0.8439, 0.2003, 0.3198, 0.5710],
|
||
|
[0.6949, 0.0890, 0.2779, 0.6868, 0.4437]], np.float32)
|
||
|
net = GatherDGradNet(dim)
|
||
|
output = net(index, grad)
|
||
|
error = 1e-4
|
||
|
diff = output.asnumpy() - expect
|
||
|
assert np.all(diff < error)
|
||
|
|
||
|
@pytest.mark.level0
|
||
|
@pytest.mark.platform_x86_gpu_training
|
||
|
@pytest.mark.env_onecard
|
||
|
def test_gather_grad_graph_int32_fp16():
|
||
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||
|
dim = 0
|
||
|
index = Tensor(np.array([[0, 1, 1, 0, 0], [1, 0, 0, 1, 1]]), ms.int32)
|
||
|
grad = Tensor(np.array([[0.9031, 0.0890, 0.2779, 0.3198, 0.5710],
|
||
|
[0.6949, 0.8439, 0.2003, 0.6868, 0.4437]]), ms.float16)
|
||
|
expect = np.array([[0.9031, 0.8439, 0.2003, 0.3198, 0.5710],
|
||
|
[0.6949, 0.0890, 0.2779, 0.6868, 0.4437]], np.float16)
|
||
|
net = GatherDGradNet(dim)
|
||
|
output = net(index, grad)
|
||
|
error = 1e-4
|
||
|
diff = output.asnumpy() - expect
|
||
|
assert np.all(diff < error)
|
||
|
|
||
|
@pytest.mark.level0
|
||
|
@pytest.mark.platform_x86_gpu_training
|
||
|
@pytest.mark.env_onecard
|
||
|
def test_gather_grad_graph_int64_fp16():
|
||
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||
|
dim = 0
|
||
|
index = Tensor(np.array([[0, 1, 1, 0, 0], [1, 0, 0, 1, 1]]), ms.int64)
|
||
|
grad = Tensor(np.array([[0.9031, 0.0890, 0.2779, 0.3198, 0.5710],
|
||
|
[0.6949, 0.8439, 0.2003, 0.6868, 0.4437]]), ms.float16)
|
||
|
expect = np.array([[0.9031, 0.8439, 0.2003, 0.3198, 0.5710],
|
||
|
[0.6949, 0.0890, 0.2779, 0.6868, 0.4437]], np.float16)
|
||
|
net = GatherDGradNet(dim)
|
||
|
output = net(index, grad)
|
||
|
error = 1e-4
|
||
|
diff = output.asnumpy() - expect
|
||
|
assert np.all(diff < error)
|
||
|
|
||
|
@pytest.mark.level0
|
||
|
@pytest.mark.platform_x86_gpu_training
|
||
|
@pytest.mark.env_onecard
|
||
|
def test_gather_grad_pynative_int32_fp32():
|
||
|
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
|
||
|
dim = 0
|
||
|
index = Tensor(np.array([[0, 1, 1, 0, 0], [1, 0, 0, 1, 1]]), ms.int32)
|
||
|
grad = Tensor(np.array([[0.9031, 0.0890, 0.2779, 0.3198, 0.5710],
|
||
|
[0.6949, 0.8439, 0.2003, 0.6868, 0.4437]]), ms.float32)
|
||
|
expect = np.array([[0.9031, 0.8439, 0.2003, 0.3198, 0.5710],
|
||
|
[0.6949, 0.0890, 0.2779, 0.6868, 0.4437]], np.float32)
|
||
|
output = P.GatherDGrad(dim)(index, grad)
|
||
|
error = 1e-4
|
||
|
diff = output.asnumpy() - expect
|
||
|
assert np.all(diff < error)
|
||
|
|
||
|
@pytest.mark.level0
|
||
|
@pytest.mark.platform_x86_gpu_training
|
||
|
@pytest.mark.env_onecard
|
||
|
def test_gather_grad_pynative_int64_fp32():
|
||
|
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
|
||
|
dim = 0
|
||
|
index = Tensor(np.array([[0, 1, 1, 0, 0], [1, 0, 0, 1, 1]]), ms.int64)
|
||
|
grad = Tensor(np.array([[0.9031, 0.0890, 0.2779, 0.3198, 0.5710],
|
||
|
[0.6949, 0.8439, 0.2003, 0.6868, 0.4437]]), ms.float32)
|
||
|
expect = np.array([[0.9031, 0.8439, 0.2003, 0.3198, 0.5710],
|
||
|
[0.6949, 0.0890, 0.2779, 0.6868, 0.4437]], np.float32)
|
||
|
output = P.GatherDGrad(dim)(index, grad)
|
||
|
error = 1e-4
|
||
|
diff = output.asnumpy() - expect
|
||
|
assert np.all(diff < error)
|
||
|
|
||
|
@pytest.mark.level0
|
||
|
@pytest.mark.platform_x86_gpu_training
|
||
|
@pytest.mark.env_onecard
|
||
|
def test_gather_grad_pynative_int32_fp16():
|
||
|
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
|
||
|
dim = 0
|
||
|
index = Tensor(np.array([[0, 1, 1, 0, 0], [1, 0, 0, 1, 1]]), ms.int32)
|
||
|
grad = Tensor(np.array([[0.9031, 0.0890, 0.2779, 0.3198, 0.5710],
|
||
|
[0.6949, 0.8439, 0.2003, 0.6868, 0.4437]]), ms.float16)
|
||
|
expect = np.array([[0.9031, 0.8439, 0.2003, 0.3198, 0.5710],
|
||
|
[0.6949, 0.0890, 0.2779, 0.6868, 0.4437]], np.float16)
|
||
|
output = P.GatherDGrad(dim)(index, grad)
|
||
|
error = 1e-4
|
||
|
diff = output.asnumpy() - expect
|
||
|
assert np.all(diff < error)
|
||
|
|
||
|
@pytest.mark.level0
|
||
|
@pytest.mark.platform_x86_gpu_training
|
||
|
@pytest.mark.env_onecard
|
||
|
def test_gather_grad_pynative_int64_fp16():
|
||
|
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
|
||
|
dim = 0
|
||
|
index = Tensor(np.array([[0, 1, 1, 0, 0], [1, 0, 0, 1, 1]]), ms.int64)
|
||
|
grad = Tensor(np.array([[0.9031, 0.0890, 0.2779, 0.3198, 0.5710],
|
||
|
[0.6949, 0.8439, 0.2003, 0.6868, 0.4437]]), ms.float16)
|
||
|
expect = np.array([[0.9031, 0.8439, 0.2003, 0.3198, 0.5710],
|
||
|
[0.6949, 0.0890, 0.2779, 0.6868, 0.4437]], np.float16)
|
||
|
output = P.GatherDGrad(dim)(index, grad)
|
||
|
error = 1e-4
|
||
|
diff = output.asnumpy() - expect
|
||
|
assert np.all(diff < error)
|