mindspore/model_zoo/official/cv/lenet_quant/Readme.md

184 lines
7.1 KiB
Markdown
Raw Normal View History

2020-08-25 21:09:38 +08:00
# Contents
2020-08-25 21:09:38 +08:00
- [LeNet Description](#lenet-description)
- [Model Architecture](#model-architecture)
- [Dataset](#dataset)
- [Environment Requirements](#environment-requirements)
- [Quick Start](#quick-start)
- [Script Description](#script-description)
- [Script and Sample Code](#script-and-sample-code)
- [Script Parameters](#script-parameters)
- [Training Process](#training-process)
- [Training](#training)
- [Evaluation Process](#evaluation-process)
- [Evaluation](#evaluation)
- [Model Description](#model-description)
- [Performance](#performance)
- [Evaluation Performance](#evaluation-performance)
- [ModelZoo Homepage](#modelzoo-homepage)
2020-08-25 21:09:38 +08:00
# [LeNet Description](#contents)
2020-08-25 21:09:38 +08:00
LeNet was proposed in 1998, a typical convolutional neural network. It was used for digit recognition and got big success.
2020-08-25 21:09:38 +08:00
[Paper](https://ieeexplore.ieee.org/document/726791): Y.Lecun, L.Bottou, Y.Bengio, P.Haffner. Gradient-Based Learning Applied to Document Recognition. *Proceedings of the IEEE*. 1998.
2020-08-25 21:09:38 +08:00
This is the quantitative network of LeNet.
2020-08-25 21:09:38 +08:00
# [Model Architecture](#contents)
2020-08-25 21:09:38 +08:00
LeNet is very simple, which contains 5 layers. The layer composition consists of 2 convolutional layers and 3 fully connected layers.
2020-08-25 21:09:38 +08:00
# [Dataset](#contents)
2020-08-25 21:09:38 +08:00
Dataset used: [MNIST](<http://yann.lecun.com/exdb/mnist/>)
2020-08-25 21:09:38 +08:00
- Dataset size 52.4M 60,000 28*28 in 10 classes
- Train 60,000 images
- Test 10,000 images
- Data format binary files
- Note Data will be processed in dataset.py
2020-08-25 21:09:38 +08:00
- The directory structure is as follows:
```
2020-08-25 21:09:38 +08:00
└─Data
├─test
│ t10k-images.idx3-ubyte
│ t10k-labels.idx1-ubyte
2020-08-25 21:09:38 +08:00
└─train
train-images.idx3-ubyte
train-labels.idx1-ubyte
```
2020-08-25 21:09:38 +08:00
# [Environment Requirements](#contents)
2020-08-25 21:09:38 +08:00
- Hardware:Ascend
- Prepare hardware environment with Ascend
- Framework
2020-09-10 20:44:28 +08:00
- [MindSpore](https://www.mindspore.cn/install/en)
2020-08-25 21:09:38 +08:00
- For more information, please check the resources below
- [MindSpore tutorials](https://www.mindspore.cn/tutorial/zh-CN/master/index.html)
- [MindSpore API](https://www.mindspore.cn/api/zh-CN/master/index.html)
2020-08-25 21:09:38 +08:00
# [Quick Start](#contents)
2020-08-25 21:09:38 +08:00
After installing MindSpore via the official website, you can start training and evaluation as follows:
```python
2020-08-25 21:09:38 +08:00
# enter ../lenet directory and train lenet network,then a '.ckpt' file will be generated.
sh run_standalone_train_ascend.sh [DATA_PATH]
# enter lenet dir, train LeNet-Quant
python train.py --device_target=Ascend --data_path=[DATA_PATH] --ckpt_path=[CKPT_PATH] --dataset_sink_mode=True
#evaluate LeNet-Quant
python eval.py --device_target=Ascend --data_path=[DATA_PATH] --ckpt_path=[CKPT_PATH] --dataset_sink_mode=True
```
2020-08-25 21:09:38 +08:00
# [Script Description](#contents)
2020-08-25 21:09:38 +08:00
## [Script and Sample Code](#contents)
2020-08-25 21:09:38 +08:00
```
├── model_zoo
├── README.md // descriptions about all the models
├── lenet_quant
├── README.md // descriptions about LeNet-Quant
├── src
│ ├── config.py // parameter configuration
│ ├── dataset.py // creating dataset
│ ├── lenet_fusion.py // auto constructed quantitative network model of LeNet-Quant
│ ├── lenet_quant.py // manual constructed quantitative network model of LeNet-Quant
│ ├── loss_monitor.py //monitor of network's loss and other data
├── requirements.txt // package needed
├── train.py // training LeNet-Quant network with device Ascend
├── eval.py // evaluating LeNet-Quant network with device Ascend
```
2020-08-25 21:09:38 +08:00
## [Script Parameters](#contents)
```python
2020-08-25 21:09:38 +08:00
Major parameters in train.py and config.py as follows:
--data_path: The absolute full path to the train and evaluation datasets.
--epoch_size: Total training epochs.
--batch_size: Training batch size.
--image_height: Image height used as input to the model.
--image_width: Image width used as input the model.
--device_target: Device where the code will be implemented. Optional values
are "Ascend", "GPU", "CPU".Only "Ascend" is supported now.
--ckpt_path: The absolute full path to the checkpoint file saved
after training.
--data_path: Path where the dataset is saved
```
2020-08-25 21:09:38 +08:00
## [Training Process](#contents)
2020-08-25 21:09:38 +08:00
### Training
2020-08-25 21:09:38 +08:00
```
python train.py --device_target=Ascend --dataset_path=/home/datasets/MNIST --dataset_sink_mode=True > log.txt 2>&1 &
```
2020-08-25 21:09:38 +08:00
After training, the loss value will be achieved as follows:
2020-08-25 21:09:38 +08:00
```
# grep "Epoch " log.txt
Epoch: [ 1/ 10], step: [ 937/ 937], loss: [0.0081], avg loss: [0.0081], time: [11268.6832ms]
Epoch time: 11269.352, per step time: 12.027, avg loss: 0.008
Epoch: [ 2/ 10], step: [ 937/ 937], loss: [0.0496], avg loss: [0.0496], time: [3085.2389ms]
Epoch time: 3085.641, per step time: 3.293, avg loss: 0.050
Epoch: [ 3/ 10], step: [ 937/ 937], loss: [0.0017], avg loss: [0.0017], time: [3085.3510ms]
...
...
```
2020-08-25 21:09:38 +08:00
The model checkpoint will be saved in the current directory.
2020-08-25 21:09:38 +08:00
## [Evaluation Process](#contents)
2020-08-25 21:09:38 +08:00
### Evaluation
2020-08-25 21:09:38 +08:00
Before running the command below, please check the checkpoint path used for evaluation.
2020-08-25 21:09:38 +08:00
```
python eval.py --data_path Data --ckpt_path ckpt/checkpoint_lenet-1_937.ckpt > log.txt 2>&1 &
```
2020-08-25 21:09:38 +08:00
You can view the results through the file "log.txt". The accuracy of the test dataset will be as follows:
2020-08-25 21:09:38 +08:00
```
# grep "Accuracy: " log.txt
'Accuracy': 0.9842
```
2020-08-25 21:09:38 +08:00
# [Model Description](#contents)
2020-08-25 21:09:38 +08:00
## [Performance](#contents)
2020-08-25 21:09:38 +08:00
### Evaluation Performance
2020-08-25 21:09:38 +08:00
| Parameters | LeNet |
| -------------------------- | ----------------------------------------------------------- |
| Resource | Ascend 910 CPU 2.60GHz 56cores Memory 314G |
| uploaded Date | 06/09/2020 (month/day/year) |
| MindSpore Version | 0.5.0-beta |
| Dataset | MNIST |
| Training Parameters | epoch=10, steps=937, batch_size = 64, lr=0.01 |
| Optimizer | Momentum |
| Loss Function | Softmax Cross Entropy |
| outputs | probability |
| Loss | 0.002 |
| Speed |3.29 ms/step |
| Total time | 40s |
| Checkpoint for Fine tuning | 482k (.ckpt file) |
| Scripts | [scripts](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/lenet) |
2020-08-25 21:09:38 +08:00
# [Description of Random Situation](#contents)
2020-08-25 21:09:38 +08:00
In dataset.py, we set the seed inside “create_dataset" function.
2020-08-25 21:09:38 +08:00
# [ModelZoo Homepage](#contents)
Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo).