mindspore/model_zoo/ssd/train.py

136 lines
6.6 KiB
Python
Raw Normal View History

2020-04-30 10:36:06 +08:00
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# less required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
2020-05-06 15:26:26 +08:00
"""Train SSD and get checkpoint files."""
2020-04-30 10:36:06 +08:00
import os
import argparse
import mindspore.nn as nn
from mindspore import context, Tensor
from mindspore.communication.management import init
from mindspore.train.callback import CheckpointConfig, ModelCheckpoint, LossMonitor, TimeMonitor
from mindspore.train import Model, ParallelMode
from mindspore.train.serialization import load_checkpoint, load_param_into_net
2020-05-06 15:26:26 +08:00
from src.ssd import SSD300, SSDWithLossCell, TrainingWrapper, ssd_mobilenet_v2
from src.config import config
from src.dataset import create_ssd_dataset, data_to_mindrecord_byte_image
from src.lr_schedule import get_lr
from src.init_params import init_net_param
2020-04-30 10:36:06 +08:00
def main():
parser = argparse.ArgumentParser(description="SSD training")
parser.add_argument("--only_create_dataset", type=bool, default=False, help="If set it true, only create "
2020-05-06 15:26:26 +08:00
"Mindrecord, default is False.")
parser.add_argument("--distribute", type=bool, default=False, help="Run distribute, default is False.")
2020-04-30 10:36:06 +08:00
parser.add_argument("--device_id", type=int, default=0, help="Device id, default is 0.")
parser.add_argument("--device_num", type=int, default=1, help="Use device nums, default is 1.")
2020-05-06 15:26:26 +08:00
parser.add_argument("--lr", type=float, default=0.05, help="Learning rate, default is 0.05.")
2020-04-30 10:36:06 +08:00
parser.add_argument("--mode", type=str, default="sink", help="Run sink mode or not, default is sink.")
parser.add_argument("--dataset", type=str, default="coco", help="Dataset, defalut is coco.")
2020-05-06 15:26:26 +08:00
parser.add_argument("--epoch_size", type=int, default=250, help="Epoch size, default is 250.")
2020-04-30 10:36:06 +08:00
parser.add_argument("--batch_size", type=int, default=32, help="Batch size, default is 32.")
parser.add_argument("--pre_trained", type=str, default=None, help="Pretrained Checkpoint file path.")
2020-05-25 10:34:46 +08:00
parser.add_argument("--pre_trained_epoch_size", type=int, default=0, help="Pretrained epoch size.")
2020-05-06 15:26:26 +08:00
parser.add_argument("--save_checkpoint_epochs", type=int, default=10, help="Save checkpoint epochs, default is 5.")
2020-04-30 10:36:06 +08:00
parser.add_argument("--loss_scale", type=int, default=1024, help="Loss scale, default is 1024.")
args_opt = parser.parse_args()
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=args_opt.device_id)
if args_opt.distribute:
device_num = args_opt.device_num
context.reset_auto_parallel_context()
context.set_auto_parallel_context(parallel_mode=ParallelMode.DATA_PARALLEL, mirror_mean=True,
device_num=device_num)
init()
rank = args_opt.device_id % device_num
else:
rank = 0
device_num = 1
print("Start create dataset!")
# It will generate mindrecord file in args_opt.mindrecord_dir,
# and the file name is ssd.mindrecord0, 1, ... file_num.
prefix = "ssd.mindrecord"
2020-05-06 15:26:26 +08:00
mindrecord_dir = config.mindrecord_dir
2020-04-30 10:36:06 +08:00
mindrecord_file = os.path.join(mindrecord_dir, prefix + "0")
if not os.path.exists(mindrecord_file):
if not os.path.isdir(mindrecord_dir):
os.makedirs(mindrecord_dir)
if args_opt.dataset == "coco":
2020-05-06 15:26:26 +08:00
if os.path.isdir(config.coco_root):
2020-04-30 10:36:06 +08:00
print("Create Mindrecord.")
data_to_mindrecord_byte_image("coco", True, prefix)
print("Create Mindrecord Done, at {}".format(mindrecord_dir))
else:
2020-05-06 15:26:26 +08:00
print("coco_root not exits.")
2020-04-30 10:36:06 +08:00
else:
2020-05-06 15:26:26 +08:00
if os.path.isdir(config.image_dir) and os.path.exists(config.anno_path):
2020-04-30 10:36:06 +08:00
print("Create Mindrecord.")
data_to_mindrecord_byte_image("other", True, prefix)
print("Create Mindrecord Done, at {}".format(mindrecord_dir))
else:
2020-05-06 15:26:26 +08:00
print("image_dir or anno_path not exits.")
2020-04-30 10:36:06 +08:00
if not args_opt.only_create_dataset:
loss_scale = float(args_opt.loss_scale)
# When create MindDataset, using the fitst mindrecord file, such as ssd.mindrecord0.
dataset = create_ssd_dataset(mindrecord_file, repeat_num=args_opt.epoch_size,
batch_size=args_opt.batch_size, device_num=device_num, rank=rank)
dataset_size = dataset.get_dataset_size()
print("Create dataset done!")
2020-05-06 15:26:26 +08:00
backbone = ssd_mobilenet_v2()
ssd = SSD300(backbone=backbone, config=config)
2020-04-30 10:36:06 +08:00
net = SSDWithLossCell(ssd, config)
init_net_param(net)
# checkpoint
ckpt_config = CheckpointConfig(save_checkpoint_steps=dataset_size * args_opt.save_checkpoint_epochs)
ckpoint_cb = ModelCheckpoint(prefix="ssd", directory=None, config=ckpt_config)
if args_opt.pre_trained:
2020-05-25 10:34:46 +08:00
if args_opt.pre_trained_epoch_size <= 0:
raise KeyError("pre_trained_epoch_size must be greater than 0.")
param_dict = load_checkpoint(args_opt.pre_trained)
2020-04-30 10:36:06 +08:00
load_param_into_net(net, param_dict)
2020-05-06 15:26:26 +08:00
lr = Tensor(get_lr(global_step=config.global_step,
lr_init=config.lr_init, lr_end=config.lr_end_rate * args_opt.lr, lr_max=args_opt.lr,
warmup_epochs=config.warmup_epochs,
total_epochs=args_opt.epoch_size,
2020-05-25 10:34:46 +08:00
steps_per_epoch=dataset_size))
2020-05-06 15:26:26 +08:00
opt = nn.Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr,
config.momentum, config.weight_decay, loss_scale)
2020-05-25 10:34:46 +08:00
net = TrainingWrapper(net, opt, loss_scale)
2020-04-30 10:36:06 +08:00
callback = [TimeMonitor(data_size=dataset_size), LossMonitor(), ckpoint_cb]
model = Model(net)
dataset_sink_mode = False
if args_opt.mode == "sink":
print("In sink mode, one epoch return a loss.")
dataset_sink_mode = True
print("Start train SSD, the first epoch will be slower because of the graph compilation.")
model.train(args_opt.epoch_size, dataset, callbacks=callback, dataset_sink_mode=dataset_sink_mode)
if __name__ == '__main__':
main()