mindspore/tests/st/numpy_native/utils.py

185 lines
6.2 KiB
Python

# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""utility functions for mindspore.numpy st tests"""
import functools
import numpy as onp
from mindspore import Tensor
import mindspore.numpy as mnp
def match_array(actual, expected, error=0):
if isinstance(actual, int):
actual = onp.asarray(actual)
if isinstance(expected, (int, tuple)):
expected = onp.asarray(expected)
if error > 0:
onp.testing.assert_almost_equal(actual.tolist(), expected.tolist(),
decimal=error)
else:
onp.testing.assert_equal(actual.tolist(), expected.tolist())
def check_all_results(onp_results, mnp_results, error=0):
"""Check all results from numpy and mindspore.numpy"""
for i, _ in enumerate(onp_results):
match_array(onp_results[i], mnp_results[i].asnumpy())
def check_all_unique_results(onp_results, mnp_results):
"""
Check all results from numpy and mindspore.numpy.
Args:
onp_results (Union[tuple of numpy.arrays, numpy.array])
mnp_results (Union[tuple of Tensors, Tensor])
"""
for i, _ in enumerate(onp_results):
if isinstance(onp_results[i], tuple):
for j in range(len(onp_results[i])):
match_array(onp_results[i][j],
mnp_results[i][j].asnumpy(), error=7)
else:
match_array(onp_results[i], mnp_results[i].asnumpy(), error=7)
def run_non_kw_test(mnp_fn, onp_fn, test_case):
"""Run tests on functions with non keyword arguments"""
for i in range(len(test_case.arrs)):
arrs = test_case.arrs[:i]
match_res(mnp_fn, onp_fn, *arrs)
for i in range(len(test_case.scalars)):
arrs = test_case.scalars[:i]
match_res(mnp_fn, onp_fn, *arrs)
for i in range(len(test_case.expanded_arrs)):
arrs = test_case.expanded_arrs[:i]
match_res(mnp_fn, onp_fn, *arrs)
for i in range(len(test_case.nested_arrs)):
arrs = test_case.nested_arrs[:i]
match_res(mnp_fn, onp_fn, *arrs)
def rand_int(*shape):
"""return an random integer array with parameter shape"""
res = onp.random.randint(low=1, high=5, size=shape)
if isinstance(res, onp.ndarray):
return res.astype(onp.float32)
return float(res)
# return an random boolean array
def rand_bool(*shape):
return onp.random.rand(*shape) > 0.5
def match_res(mnp_fn, onp_fn, *arrs, **kwargs):
"""Checks results from applying mnp_fn and onp_fn on arrs respectively"""
dtype = kwargs.pop('dtype', mnp.float32)
mnp_arrs = map(functools.partial(Tensor, dtype=dtype), arrs)
error = kwargs.pop('error', 0)
mnp_res = mnp_fn(*mnp_arrs, **kwargs)
onp_res = onp_fn(*arrs, **kwargs)
match_all_arrays(mnp_res, onp_res, error=error)
def match_all_arrays(mnp_res, onp_res, error=0):
if isinstance(mnp_res, (tuple, list)):
assert len(mnp_res) == len(onp_res)
for actual, expected in zip(mnp_res, onp_res):
match_array(actual.asnumpy(), expected, error)
else:
match_array(mnp_res.asnumpy(), onp_res, error)
def match_meta(actual, expected):
# float64 and int64 are not supported, and the default type for
# float and int are float32 and int32, respectively
if expected.dtype == onp.float64:
expected = expected.astype(onp.float32)
elif expected.dtype == onp.int64:
expected = expected.astype(onp.int32)
assert actual.shape == expected.shape
assert actual.dtype == expected.dtype
def run_binop_test(mnp_fn, onp_fn, test_case, error=0):
for arr in test_case.arrs:
match_res(mnp_fn, onp_fn, arr, arr, error=error)
for scalar in test_case.scalars:
match_res(mnp_fn, onp_fn, arr, scalar, error=error)
match_res(mnp_fn, onp_fn, scalar, arr, error=error)
for scalar1 in test_case.scalars:
for scalar2 in test_case.scalars:
match_res(mnp_fn, onp_fn, scalar1, scalar2, error=error)
for expanded_arr1 in test_case.expanded_arrs:
for expanded_arr2 in test_case.expanded_arrs:
match_res(mnp_fn, onp_fn, expanded_arr1, expanded_arr2, error=error)
for broadcastable1 in test_case.broadcastables:
for broadcastable2 in test_case.broadcastables:
match_res(mnp_fn, onp_fn, broadcastable1, broadcastable2, error=error)
def run_unary_test(mnp_fn, onp_fn, test_case, error=0):
for arr in test_case.arrs:
match_res(mnp_fn, onp_fn, arr, error=error)
for arr in test_case.scalars:
match_res(mnp_fn, onp_fn, arr, error=error)
for arr in test_case.expanded_arrs:
match_res(mnp_fn, onp_fn, arr, error=error)
def run_multi_test(mnp_fn, onp_fn, arrs, error=0):
mnp_arrs = map(Tensor, arrs)
for actual, expected in zip(mnp_fn(*mnp_arrs), onp_fn(*arrs)):
match_all_arrays(actual, expected, error)
def run_single_test(mnp_fn, onp_fn, arr, error=0):
mnp_arr = Tensor(arr)
for actual, expected in zip(mnp_fn(mnp_arr), onp_fn(arr)):
if isinstance(expected, tuple):
for actual_arr, expected_arr in zip(actual, expected):
match_array(actual_arr.asnumpy(), expected_arr, error)
match_array(actual.asnumpy(), expected, error)
def run_logical_test(mnp_fn, onp_fn, test_case):
for x1 in test_case.boolean_arrs:
for x2 in test_case.boolean_arrs:
match_res(mnp_fn, onp_fn, x1, x2, dtype=mnp.bool_)
def to_tensor(obj, dtype=None):
if dtype is None:
res = Tensor(obj)
if res.dtype == mnp.float64:
res = res.astype(mnp.float32)
if res.dtype == mnp.int64:
res = res.astype(mnp.int32)
else:
res = Tensor(obj, dtype)
return res