mindspore/tests/ut/python/nn/optim/test_lamb.py

79 lines
2.6 KiB
Python

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
""" test lamb """
import numpy as np
import mindspore.nn as nn
from mindspore import Tensor, Parameter
from mindspore.common.api import _executor
from mindspore.nn import TrainOneStepCell, WithLossCell
from mindspore.nn.optim import Lamb
from mindspore.ops import operations as P
class Net(nn.Cell):
""" Net definition """
def __init__(self):
super(Net, self).__init__()
self.weight = Parameter(Tensor(np.ones([64, 10]).astype(np.float32)), name="weight")
self.bias = Parameter(Tensor(np.ones([10]).astype((np.float32))), name="bias")
self.matmul = P.MatMul()
self.biasAdd = P.BiasAdd()
def construct(self, x):
x = self.biasAdd(self.matmul(x, self.weight), self.bias)
return x
class NetWithoutWeight(nn.Cell):
""" NetWithoutWeight definition """
def __init__(self):
super(NetWithoutWeight, self).__init__()
self.matmul = P.MatMul()
def construct(self, x):
x = self.matmul(x, x)
return x
def test_lamb_1():
""" test_Lamb_1 """
inputs = Tensor(np.ones([1, 64]).astype(np.float32))
label = Tensor(np.zeros([1, 10]).astype(np.float32))
net = Net()
net.set_train()
loss = nn.SoftmaxCrossEntropyWithLogits()
optimizer = Lamb(net.trainable_params(), decay_steps=10, warmup_steps=5)
net_with_loss = WithLossCell(net, loss)
train_network = TrainOneStepCell(net_with_loss, optimizer)
_executor.compile(train_network, inputs, label)
def test_lamb_2():
""" test_Lamb_2 """
inputs = Tensor(np.ones([1, 64]).astype(np.float32))
label = Tensor(np.zeros([1, 10]).astype(np.float32))
net = Net()
net.set_train()
loss = nn.SoftmaxCrossEntropyWithLogits()
optimizer = Lamb(net.trainable_params(), decay_steps=10, warmup_steps=0)
net_with_loss = WithLossCell(net, loss)
train_network = TrainOneStepCell(net_with_loss, optimizer)
_executor.compile(train_network, inputs, label)