Fix pylint warnings in mindspore st test module

This commit is contained in:
leonwanghui 2020-04-22 16:44:19 +08:00
parent ca3aa6071a
commit ba43dbc148
38 changed files with 324 additions and 259 deletions

View File

@ -11,6 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
# ============================================================================
import os import os
import pytest import pytest
@ -26,6 +27,7 @@ device_num = 2
device_id = int(os.getenv('DEVICE_ID')) device_id = int(os.getenv('DEVICE_ID'))
rank_id = 0 rank_id = 0
def setup_module(): def setup_module():
global device_num global device_num
global rank_id global rank_id
@ -42,9 +44,11 @@ def setup_module():
context.set_auto_parallel_context(device_num=device_num, context.set_auto_parallel_context(device_num=device_num,
global_rank=rank_id) global_rank=rank_id)
def teardown_module(): def teardown_module():
distributedTool.release() distributedTool.release()
class Onehot(Cell): class Onehot(Cell):
def __init__(self, axis=-1, depth=1, on_value=1.0, off_value=0.0, strategy=None): def __init__(self, axis=-1, depth=1, on_value=1.0, off_value=0.0, strategy=None):
super(Onehot, self).__init__() super(Onehot, self).__init__()
@ -56,25 +60,26 @@ class Onehot(Cell):
self.on_value = Tensor(on_value, ms.float32) self.on_value = Tensor(on_value, ms.float32)
self.off_value = Tensor(off_value, ms.float32) self.off_value = Tensor(off_value, ms.float32)
self.transpose = P.Transpose().set_strategy(strategy=trans_stra) self.transpose = P.Transpose().set_strategy(strategy=trans_stra)
self.sub = P.Sub().set_strategy(strategy=((1,1),(1,1))) self.sub = P.Sub().set_strategy(strategy=((1, 1), (1, 1)))
def construct(self, input, indices): def construct(self, input, indices):
x = self.onehot(indices, self.depth, self.on_value, self.off_value) x = self.onehot(indices, self.depth, self.on_value, self.off_value)
x = self.transpose(x, (1,0)) x = self.transpose(x, (1, 0))
x = self.sub(input, x) x = self.sub(input, x)
return x return x
class DataGenerator(): class DataGenerator():
def get_parallel_blocks(self, input_, strategy): def get_parallel_blocks(self, input_, strategy):
blocks = [input_] blocks = [input_]
i = 0 i = 0
for stra in strategy: for stra in strategy:
temp = [] temp = []
while len(blocks)>0: while len(blocks) > 0:
block = blocks.pop(0) block = blocks.pop(0)
temp.extend(np.split(block, stra, axis=i)) temp.extend(np.split(block, stra, axis=i))
blocks.extend(temp) blocks.extend(temp)
i+=1 i += 1
return blocks return blocks
def generate_data(self, shape): def generate_data(self, shape):
@ -93,32 +98,33 @@ class DataGenerator():
stra = [1]*len(shape) stra = [1]*len(shape)
stra[0] = device_num stra[0] = device_num
datas = self.get_parallel_blocks(data, stra) datas = self.get_parallel_blocks(data, stra)
return Tensor(data),Tensor(datas[rank_id]) return Tensor(data), Tensor(datas[rank_id])
class OneHotFactory: class OneHotFactory:
def __init__(self, batch_size, classes, on_value=1.0, off_value=0.0, axis=None, strategy=None): def __init__(self, batch_size, classes, on_value=1.0, off_value=0.0, axis=None, strategy=None):
dataGen = DataGenerator() dataGen = DataGenerator()
self.input_full, self.input_part = dataGen.input_data((classes, batch_size)) self.input_full, self.input_part = dataGen.input_data((classes, batch_size))
self.label_full, self.label_part = dataGen.label_data((batch_size,),classes) self.label_full, self.label_part = dataGen.label_data((batch_size,), classes)
self.depth = classes self.depth = classes
self.on_value = on_value self.on_value = on_value
self.off_value = off_value self.off_value = off_value
self.axis = axis self.axis = axis
self.strategy = strategy self.strategy = strategy
def forward_mindspore_single_impl(self): def forward_mindspore_single_impl(self):
net = Onehot(axis=self.axis, net = Onehot(axis=self.axis,
depth=self.depth, depth=self.depth,
on_value=self.on_value, on_value=self.on_value,
off_value=self.off_value) off_value=self.off_value)
out = net(self.input_full, self.label_full) out = net(self.input_full, self.label_full)
return out return out
def forward_mindspore_parallel_impl(self): def forward_mindspore_parallel_impl(self):
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
net = Onehot(axis=self.axis, net = Onehot(axis=self.axis,
depth=self.depth, depth=self.depth,
on_value=self.on_value, on_value=self.on_value,
off_value=self.off_value, strategy=self.strategy) off_value=self.off_value, strategy=self.strategy)
out = net.compile_and_run(self.input_full, self.label_full) out = net.compile_and_run(self.input_full, self.label_full)
return out return out
@ -137,7 +143,7 @@ def test_reid_onehot_forward_int32_128_depth1024_model_parallel():
on_value=1.000000, on_value=1.000000,
off_value=0.000000, off_value=0.000000,
axis=-1, axis=-1,
strategy=((1,device_num),(),())) strategy=((1, device_num), (), ()))
fact.forward_cmp() fact.forward_cmp()
@ -147,5 +153,5 @@ def test_reid_onehot_forward_int32_1024_depth128_model_parallel():
on_value=1.000000, on_value=1.000000,
off_value=0.000000, off_value=0.000000,
axis=-1, axis=-1,
strategy=((1,device_num),(),())) strategy=((1, device_num), (), ()))
fact.forward_cmp() fact.forward_cmp()

View File

@ -11,6 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
# ============================================================================
import os import os
import pytest import pytest
@ -31,7 +32,7 @@ from mindspore.nn.optim.momentum import Momentum
from mindspore.train.callback import Callback from mindspore.train.callback import Callback
np.set_printoptions(threshold=np.inf) np.set_printoptions(threshold=np.inf)
device_num=2 device_num = 2
device_id = int(os.getenv('DEVICE_ID')) device_id = int(os.getenv('DEVICE_ID'))
rank_id = 0 rank_id = 0
embed = 128 embed = 128
@ -39,6 +40,7 @@ classes = 32
batch_size = 32*2 batch_size = 32*2
MatmulParamShape = (classes, embed) MatmulParamShape = (classes, embed)
def setup_module(): def setup_module():
global device_num global device_num
global rank_id global rank_id
@ -55,26 +57,28 @@ def setup_module():
context.set_auto_parallel_context(device_num=device_num, context.set_auto_parallel_context(device_num=device_num,
global_rank=device_id) global_rank=device_id)
def teardown_module(): def teardown_module():
distributedTool.release() distributedTool.release()
class DataGenerator(): class DataGenerator():
def get_parallel_blocks(self, input_, strategy): def get_parallel_blocks(self, input_, strategy):
blocks = [input_] blocks = [input_]
i = 0 i = 0
for stra in strategy: for stra in strategy:
temp = [] temp = []
while len(blocks)>0: while len(blocks) > 0:
block = blocks.pop(0) block = blocks.pop(0)
temp.extend(np.split(block, stra, axis=i)) temp.extend(np.split(block, stra, axis=i))
blocks.extend(temp) blocks.extend(temp)
i+=1 i += 1
return blocks return blocks
def generate_data(self, shape): def generate_data(self, shape):
size = np.cumprod(shape)[-1] size = np.cumprod(shape)[-1]
num_range = min(size, 1000) num_range = min(size, 1000)
data = (np.arange(0, size)%num_range)/num_range data = (np.arange(0, size) % num_range)/num_range
data = np.reshape(data, shape) data = np.reshape(data, shape)
return data return data
@ -83,14 +87,15 @@ class DataGenerator():
stra = [1]*len(shape) stra = [1]*len(shape)
stra[0] = device_num stra[0] = device_num
datas = self.get_parallel_blocks(data, stra) datas = self.get_parallel_blocks(data, stra)
return Tensor(data), Tensor(datas[rank_id]) return Tensor(data), Tensor(datas[rank_id])
def label_data(self, shape, embed): def label_data(self, shape, embed):
data = (self.generate_data(shape)*(embed-1)).astype(np.int32) data = (self.generate_data(shape)*(embed-1)).astype(np.int32)
stra = [1]*len(shape) stra = [1]*len(shape)
stra[0] = device_num stra[0] = device_num
datas = self.get_parallel_blocks(data, stra) datas = self.get_parallel_blocks(data, stra)
return Tensor(data),Tensor(datas[rank_id]) return Tensor(data), Tensor(datas[rank_id])
class Dataset(): class Dataset():
def __init__(self, predict, label, length=1, input_num=2): def __init__(self, predict, label, length=1, input_num=2):
@ -121,15 +126,18 @@ class Dataset():
def get_repeat_count(self): def get_repeat_count(self):
return self.length return self.length
class ModelCallback(Callback): class ModelCallback(Callback):
def __init__(self): def __init__(self):
super(ModelCallback, self).__init__() super(ModelCallback, self).__init__()
self.loss_list = [] self.loss_list = []
def epoch_end(self, run_context, *args): def epoch_end(self, run_context, *args):
cb_params = run_context.original_args() cb_params = run_context.original_args()
result = cb_params.net_outputs result = cb_params.net_outputs
self.loss_list.append(result.asnumpy().mean()) self.loss_list.append(result.asnumpy().mean())
class SoftmaxCrossEntropyExpand(Cell): class SoftmaxCrossEntropyExpand(Cell):
def __init__(self, sparse=False, stra_list=[]): def __init__(self, sparse=False, stra_list=[]):
super(SoftmaxCrossEntropyExpand, self).__init__() super(SoftmaxCrossEntropyExpand, self).__init__()
@ -164,22 +172,25 @@ class SoftmaxCrossEntropyExpand(Cell):
loss = self.reduce_mean(loss, -1) loss = self.reduce_mean(loss, -1)
return loss return loss
class MatmulNet(Cell): class MatmulNet(Cell):
def __init__(self, matmul_stra = None, loss_stra_list=[]): def __init__(self, matmul_stra=None, loss_stra_list=[]):
super(MatmulNet, self).__init__() super(MatmulNet, self).__init__()
self.matmul = P.MatMul(transpose_b=True).set_strategy(strategy=matmul_stra) self.matmul = P.MatMul(transpose_b=True).set_strategy(strategy=matmul_stra)
self.loss = SoftmaxCrossEntropyExpand(sparse=True, stra_list=loss_stra_list) self.loss = SoftmaxCrossEntropyExpand(sparse=True, stra_list=loss_stra_list)
self.weight = Parameter(Tensor(np.ones(MatmulParamShape), dtype=ms.float32), name="weight") self.weight = Parameter(Tensor(np.ones(MatmulParamShape), dtype=ms.float32), name="weight")
def construct(self, x, label): def construct(self, x, label):
loss_input = self.matmul(x, self.weight) loss_input = self.matmul(x, self.weight)
out = self.loss(loss_input, label) out = self.loss(loss_input, label)
return out return out
class LossFactory(): class LossFactory():
def __init__(self): def __init__(self):
dataGen = DataGenerator() dataGen = DataGenerator()
self.input_full, self.input_part = dataGen.input_data((batch_size, embed)) self.input_full, self.input_part = dataGen.input_data((batch_size, embed))
self.label_full, self.label_part = dataGen.label_data((batch_size,),embed) self.label_full, self.label_part = dataGen.label_data((batch_size,), embed)
def single_matmul_trains(self): def single_matmul_trains(self):
single_callback = ModelCallback() single_callback = ModelCallback()
@ -196,32 +207,33 @@ class LossFactory():
parallel_callback = ModelCallback() parallel_callback = ModelCallback()
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
net = MatmulNet() net = MatmulNet()
optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9) optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
model = Model(net, optimizer=optimizer) model = Model(net, optimizer=optimizer)
epoch_size = 6 epoch_size = 6
dataset = Dataset(self.input_part, self.label_part) dataset = Dataset(self.input_part, self.label_part)
model.train(epoch_size, dataset, callbacks=parallel_callback, dataset_sink_mode=False) model.train(epoch_size, dataset, callbacks=parallel_callback, dataset_sink_mode=False)
loss_value = np.array(parallel_callback.loss_list) loss_value = np.array(parallel_callback.loss_list)
return loss_value return loss_value
def model_parallel_matmul_trains(self): def model_parallel_matmul_trains(self):
parallel_callback = ModelCallback() parallel_callback = ModelCallback()
matmul_stra = ((1,1),(device_num,1)) matmul_stra = ((1, 1), (device_num, 1))
reduce_max_stra = ((1,device_num),) reduce_max_stra = ((1, device_num),)
sub_stra = ((1,device_num),(1,1)) sub_stra = ((1, device_num), (1, 1))
exp_stra = ((1,device_num),) exp_stra = ((1, device_num),)
reduce_sum_stra = ((1,device_num),) reduce_sum_stra = ((1, device_num),)
div_stra = ((1,device_num),(1,1)) div_stra = ((1, device_num), (1, 1))
log_stra = ((1,device_num),) log_stra = ((1, device_num),)
mul_stra = ((1,device_num),(1,device_num)) mul_stra = ((1, device_num), (1, device_num))
sum_cross_entropy_stra = ((1,device_num),) sum_cross_entropy_stra = ((1, device_num),)
mul2_stra = ((),(device_num,)) mul2_stra = ((), (device_num,))
reduce_mean_stra = ((device_num,),) reduce_mean_stra = ((device_num,),)
onehot_stra = ((1,device_num),(),()) onehot_stra = ((1, device_num), (), ())
loss_stra_list = [exp_stra, reduce_sum_stra, onehot_stra, div_stra, log_stra, sum_cross_entropy_stra, mul_stra, mul2_stra, reduce_mean_stra, reduce_max_stra, sub_stra] loss_stra_list = [exp_stra, reduce_sum_stra, onehot_stra, div_stra, log_stra,
sum_cross_entropy_stra, mul_stra, mul2_stra, reduce_mean_stra, reduce_max_stra, sub_stra]
context.set_auto_parallel_context(parallel_mode="auto_parallel") context.set_auto_parallel_context(parallel_mode="auto_parallel")
net = MatmulNet(matmul_stra = matmul_stra, loss_stra_list = loss_stra_list) net = MatmulNet(matmul_stra=matmul_stra, loss_stra_list=loss_stra_list)
optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9) optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
model = Model(net, optimizer=optimizer) model = Model(net, optimizer=optimizer)
epoch_size = 6 epoch_size = 6
dataset = Dataset(self.input_part, self.label_part) dataset = Dataset(self.input_part, self.label_part)
@ -231,21 +243,22 @@ class LossFactory():
def mix_parallel_matmul_trains(self): def mix_parallel_matmul_trains(self):
parallel_callback = ModelCallback() parallel_callback = ModelCallback()
matmul_stra = ((device_num,1),(1,1)) matmul_stra = ((device_num, 1), (1, 1))
reduce_max_stra = ((1,device_num),) reduce_max_stra = ((1, device_num),)
sub_stra = ((device_num,1),(device_num,1)) sub_stra = ((device_num, 1), (device_num, 1))
exp_stra = ((1,device_num),) exp_stra = ((1, device_num),)
reduce_sum_stra = ((1,device_num),) reduce_sum_stra = ((1, device_num),)
div_stra = ((1,device_num),(1,1)) div_stra = ((1, device_num), (1, 1))
log_stra = ((1,device_num),) log_stra = ((1, device_num),)
mul_stra = ((1,device_num),(1,device_num)) mul_stra = ((1, device_num), (1, device_num))
sum_cross_entropy_stra = ((1,device_num),) sum_cross_entropy_stra = ((1, device_num),)
mul2_stra = ((),(device_num,)) mul2_stra = ((), (device_num,))
reduce_mean_stra = ((device_num,),) reduce_mean_stra = ((device_num,),)
onehot_stra = ((1,device_num),(),()) onehot_stra = ((1, device_num), (), ())
loss_stra_list = [exp_stra, reduce_sum_stra, onehot_stra, div_stra, log_stra, sum_cross_entropy_stra, mul_stra, mul2_stra, reduce_mean_stra, reduce_max_stra, sub_stra] loss_stra_list = [exp_stra, reduce_sum_stra, onehot_stra, div_stra, log_stra,
sum_cross_entropy_stra, mul_stra, mul2_stra, reduce_mean_stra, reduce_max_stra, sub_stra]
context.set_auto_parallel_context(parallel_mode="auto_parallel") context.set_auto_parallel_context(parallel_mode="auto_parallel")
net = MatmulNet(matmul_stra = matmul_stra, loss_stra_list = loss_stra_list) net = MatmulNet(matmul_stra=matmul_stra, loss_stra_list=loss_stra_list)
optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9) optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
model = Model(net, optimizer=optimizer) model = Model(net, optimizer=optimizer)
epoch_size = 6 epoch_size = 6
@ -254,6 +267,7 @@ class LossFactory():
loss_value = np.array(parallel_callback.loss_list) loss_value = np.array(parallel_callback.loss_list)
return loss_value return loss_value
def test_all_trains(): def test_all_trains():
loss_factory = LossFactory() loss_factory = LossFactory()
context.reset_auto_parallel_context() context.reset_auto_parallel_context()

View File

@ -12,10 +12,10 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
# ============================================================================ # ============================================================================
import os import os
import pytest import pytest
@pytest.mark.level0 @pytest.mark.level0
@pytest.mark.platform_x86_ascend_training @pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_arm_ascend_training @pytest.mark.platform_arm_ascend_training
@ -23,4 +23,4 @@ import pytest
def test_expand_loss(): def test_expand_loss():
sh_path = os.path.split(os.path.realpath(__file__))[0] sh_path = os.path.split(os.path.realpath(__file__))[0]
ret = os.system(f"sh {sh_path}/run_auto_parallel_loss_expand.sh") ret = os.system(f"sh {sh_path}/run_auto_parallel_loss_expand.sh")
assert(ret==0) assert(ret == 0)

View File

@ -16,6 +16,7 @@
import os import os
import pytest import pytest
def test_expand_loss(): def test_expand_loss():
ret = os.system("sh run_onehot_model_parallel.sh") ret = os.system("sh run_onehot_model_parallel.sh")
assert(ret==0) assert(ret == 0)

View File

@ -11,10 +11,12 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
# ============================================================================
import os
import numpy as np import numpy as np
import pytest import pytest
from numpy import allclose import mindspore.context as context
import mindspore.nn as nn import mindspore.nn as nn
import mindspore.common.dtype as mstype import mindspore.common.dtype as mstype
from mindspore import Tensor from mindspore import Tensor
@ -22,21 +24,21 @@ from mindspore.ops import operations as P
from mindspore.nn.optim.momentum import Momentum from mindspore.nn.optim.momentum import Momentum
from mindspore.common.initializer import One from mindspore.common.initializer import One
from mindspore.train.model import Model, ParallelMode from mindspore.train.model import Model, ParallelMode
from mindspore import context
import os
from mindspore.communication.management import init from mindspore.communication.management import init
import mindspore.ops.functional as F import mindspore.ops.functional as F
from mindspore.nn.loss.loss import _Loss from mindspore.nn.loss.loss import _Loss
from mindspore.train.callback import Callback from mindspore.train.callback import Callback
from mindspore.parallel import set_algo_parameters from mindspore.parallel import set_algo_parameters
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
context.set_context(enable_hccl=True) context.set_context(enable_hccl=True)
context.set_context(enable_task_sink=True,device_id=int(os.getenv('DEVICE_ID'))) context.set_context(enable_task_sink=True, device_id=int(os.getenv('DEVICE_ID')))
context.set_context(enable_ir_fusion=True) context.set_context(enable_ir_fusion=True)
context.set_context(enable_loop_sink=False) context.set_context(enable_loop_sink=False)
init() init()
context.set_auto_parallel_context(mirror_mean=True, parallel_mode=ParallelMode.AUTO_PARALLEL) context.set_auto_parallel_context(mirror_mean=True, parallel_mode=ParallelMode.AUTO_PARALLEL)
def weight_variable(shape, factor=0.1): def weight_variable(shape, factor=0.1):
return One() return One()
@ -52,6 +54,7 @@ def _conv1x1(in_channels, out_channels, stride=1, padding=0, pad_mode='same'):
return nn.Conv2d(in_channels, out_channels, return nn.Conv2d(in_channels, out_channels,
kernel_size=1, stride=stride, padding=padding, pad_mode=pad_mode, weight_init=init_value) kernel_size=1, stride=stride, padding=padding, pad_mode=pad_mode, weight_init=init_value)
def _conv7x7(in_channels, out_channels, stride=1, padding=0, pad_mode='same'): def _conv7x7(in_channels, out_channels, stride=1, padding=0, pad_mode='same'):
init_value = weight_variable((out_channels, in_channels, 7, 7)) init_value = weight_variable((out_channels, in_channels, 7, 7))
return nn.Conv2d(in_channels, out_channels, return nn.Conv2d(in_channels, out_channels,
@ -63,6 +66,7 @@ def _fused_bn(channels, momentum=0.9):
init_bias = weight_variable((channels,)) init_bias = weight_variable((channels,))
return nn.BatchNorm2d(channels, momentum=momentum) return nn.BatchNorm2d(channels, momentum=momentum)
class BasicBlock(nn.Cell): class BasicBlock(nn.Cell):
expansion = 1 expansion = 1
@ -172,7 +176,7 @@ class ResNet(nn.Cell):
layer_nums, layer_nums,
in_channels, in_channels,
out_channels, out_channels,
strides=[1,2,2,2], strides=[1, 2, 2, 2],
num_classes=100): num_classes=100):
super(ResNet, self).__init__() super(ResNet, self).__init__()
@ -292,17 +296,19 @@ class SoftmaxCrossEntropyExpand(_Loss):
rank_id = int(os.environ["RANK_ID"]) rank_id = int(os.environ["RANK_ID"])
device_num = int(os.environ["RANK_SIZE"]) device_num = int(os.environ["RANK_SIZE"])
class DataGenerator(): class DataGenerator():
def get_parallel_blocks(self, input_, strategy): def get_parallel_blocks(self, input_, strategy):
blocks = [input_] blocks = [input_]
i = 0 i = 0
for stra in strategy: for stra in strategy:
temp = [] temp = []
while len(blocks)>0: while len(blocks) > 0:
block = blocks.pop(0) block = blocks.pop(0)
temp.extend(np.split(block, stra, axis=i)) temp.extend(np.split(block, stra, axis=i))
blocks.extend(temp) blocks.extend(temp)
i+=1 i += 1
return blocks return blocks
def generate_data(self, shape): def generate_data(self, shape):
@ -321,7 +327,7 @@ class DataGenerator():
stra = [1]*len(shape) stra = [1]*len(shape)
stra[0] = device_num stra[0] = device_num
datas = self.get_parallel_blocks(data, stra) datas = self.get_parallel_blocks(data, stra)
return Tensor(data),Tensor(datas[rank_id]) return Tensor(data), Tensor(datas[rank_id])
class Dataset(): class Dataset():
@ -359,6 +365,7 @@ class ModelCallback(Callback):
def __init__(self): def __init__(self):
super(ModelCallback, self).__init__() super(ModelCallback, self).__init__()
self.loss_list = [] self.loss_list = []
def epoch_end(self, run_context, *args): def epoch_end(self, run_context, *args):
cb_params = run_context.original_args() cb_params = run_context.original_args()
result = cb_params.net_outputs result = cb_params.net_outputs
@ -382,7 +389,7 @@ def test_train_feed(num_classes=8192):
model.train(5, dataset, dataset_sink_mode=False, callbacks=parallel_callback) model.train(5, dataset, dataset_sink_mode=False, callbacks=parallel_callback)
loss_value = np.array(parallel_callback.loss_list) loss_value = np.array(parallel_callback.loss_list)
expect_out = [9.010913, 8.855984, 8.56246, 8.146317, 7.624489] expect_out = [9.010913, 8.855984, 8.56246, 8.146317, 7.624489]
assert allclose(loss_value, expect_out, 0.0001, 0.0001) assert np.allclose(loss_value, expect_out, 0.0001, 0.0001)
@pytest.mark.level0 @pytest.mark.level0
@ -402,4 +409,4 @@ def test_train_feed2(num_classes=1001):
model.train(5, dataset, dataset_sink_mode=False, callbacks=parallel_callback) model.train(5, dataset, dataset_sink_mode=False, callbacks=parallel_callback)
loss_value = np.array(parallel_callback.loss_list) loss_value = np.array(parallel_callback.loss_list)
expect_out = [6.908755, 6.8358116, 6.6986914, 6.506859, 6.2708097] expect_out = [6.908755, 6.8358116, 6.6986914, 6.506859, 6.2708097]
assert allclose(loss_value, expect_out, 0.0001, 0.0001) assert np.allclose(loss_value, expect_out, 0.0001, 0.0001)

View File

@ -13,12 +13,12 @@
# limitations under the License. # limitations under the License.
# ============================================================================ # ============================================================================
import numpy as np import numpy as np
from mindspore.common.tensor import Tensor
from mindspore.common import dtype as mstype
import mindspore.context as context import mindspore.context as context
from mindspore.ops import operations as P
import mindspore.nn as nn import mindspore.nn as nn
from mindspore.common import ms_function from mindspore import Tensor, ms_function
from mindspore.common import dtype as mstype
from mindspore.ops import operations as P
@ms_function @ms_function
def t1_while(x, y, z): def t1_while(x, y, z):
@ -28,8 +28,9 @@ def t1_while(x, y, z):
x = x + 3 x = x + 3
return x return x
def test_net(): def test_net():
context.set_context(mode=context.GRAPH_MODE,device_target="Ascend") context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
context.set_context(enable_task_sink=True) context.set_context(enable_task_sink=True)
c1 = Tensor([2], mstype.int32) c1 = Tensor([2], mstype.int32)
c2 = Tensor([14], mstype.int32) c2 = Tensor([14], mstype.int32)
@ -38,5 +39,6 @@ def test_net():
ret = t1_while(c1, c2, c3) ret = t1_while(c1, c2, c3)
assert (ret == expect) assert (ret == expect)
if __name__ == "__main__": if __name__ == "__main__":
test_net() test_net()

View File

@ -12,17 +12,16 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
# ============================================================================ # ============================================================================
from mindspore import Tensor
from mindspore.ops import operations as P
import mindspore.nn as nn
from mindspore.common.api import ms_function
import mindspore.common.dtype as mstype
import numpy as np import numpy as np
import mindspore.context as context import mindspore.context as context
from mindspore.common.initializer import initializer import mindspore.nn as nn
from mindspore.common.parameter import Parameter import mindspore.common.dtype as mstype
from mindspore import Tensor, ms_function
from mindspore.ops import operations as P
context.set_context(mode=context.GRAPH_MODE, device_id=5, device_target="Ascend") context.set_context(mode=context.GRAPH_MODE, device_id=5, device_target="Ascend")
#context.set_context(enable_task_sink=True)
class Net(nn.Cell): class Net(nn.Cell):
def __init__(self): def __init__(self):
super(Net, self).__init__() super(Net, self).__init__()
@ -35,17 +34,14 @@ class Net(nn.Cell):
def construct(self, x, y): def construct(self, x, y):
x = self.cast(x, mstype.float16) x = self.cast(x, mstype.float16)
y = self.cast(y, mstype.float16) y = self.cast(y, mstype.float16)
#x = self.softmax(x)
x = self.add(x, y) x = self.add(x, y)
#x = self.relu(x)
x = self.relu(x) x = self.relu(x)
#x = self.softmax(x)
x = self.reduce_mean(x) x = self.reduce_mean(x)
return x return x
def test_net(): def test_net():
x = np.random.randn(32, 10).astype(np.float32) x = np.random.randn(32, 10).astype(np.float32)
relu = Net() relu = Net()
output = relu(Tensor(x), Tensor(x)) output = relu(Tensor(x), Tensor(x))
print(x)
print(output.asnumpy()) print(output.asnumpy())

View File

@ -13,15 +13,13 @@
# limitations under the License. # limitations under the License.
# ============================================================================ # ============================================================================
import numpy as np import numpy as np
import mindspore.context as context
import mindspore.nn as nn import mindspore.nn as nn
from mindspore import Tensor, Parameter, Model, ms_function
from mindspore.ops import operations as P from mindspore.ops import operations as P
from mindspore.common.initializer import initializer from mindspore.common.initializer import initializer
from mindspore import Tensor, Parameter, Model
from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits
from mindspore.nn.optim import Momentum from mindspore.nn.optim import Momentum
from mindspore.common.api import ms_function
import mindspore.nn as wrap
import mindspore.context as context
context.set_context(device_target="Ascend", enable_task_sink=True) context.set_context(device_target="Ascend", enable_task_sink=True)
@ -35,6 +33,7 @@ class MsWrapper(nn.Cell):
def __init__(self, network): def __init__(self, network):
super(MsWrapper, self).__init__(auto_prefix=False) super(MsWrapper, self).__init__(auto_prefix=False)
self._network = network self._network = network
@ms_function @ms_function
def construct(self, *args): def construct(self, *args):
return self._network(*args) return self._network(*args)
@ -42,16 +41,16 @@ class MsWrapper(nn.Cell):
def me_train_tensor(net, input_np, label_np, epoch_size=2): def me_train_tensor(net, input_np, label_np, epoch_size=2):
loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True) loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
opt = nn.Momentum(Tensor(np.array([0.1])), Tensor(np.array([0.9])), filter(lambda x: x.requires_grad, net.get_parameters())) opt = nn.Momentum(Tensor(np.array([0.1])), Tensor(np.array([0.9])),
filter(lambda x: x.requires_grad, net.get_parameters()))
context.set_context(mode=context.GRAPH_MODE) context.set_context(mode=context.GRAPH_MODE)
Model(net, loss, opt) Model(net, loss, opt)
_network = wrap.WithLossCell(net, loss) _network = nn.WithLossCell(net, loss)
_train_net = MsWrapper(wrap.TrainOneStepCell(_network, opt)) _train_net = MsWrapper(nn.TrainOneStepCell(_network, opt))
_train_net.set_train() _train_net.set_train()
for epoch in range(0, epoch_size): for epoch in range(0, epoch_size):
print(f"epoch %d"%(epoch)) print(f"epoch %d" % (epoch))
output = _train_net(Tensor(input_np), Tensor(label_np)) output = _train_net(Tensor(input_np), Tensor(label_np))
print("********output***********")
print(output.asnumpy()) print(output.asnumpy())
@ -60,9 +59,9 @@ def test_conv_bn_add_relu_fusion():
def __init__(self): def __init__(self):
super(Net, self).__init__() super(Net, self).__init__()
self.conv = nn.Conv2d(input_channel, output_channel, self.conv = nn.Conv2d(input_channel, output_channel,
kernel_size=1, stride=1, padding=0, has_bias=False, pad_mode="same") kernel_size=1, stride=1, padding=0, has_bias=False, pad_mode="same")
self.conv1 = nn.Conv2d(input_channel, output_channel, self.conv1 = nn.Conv2d(input_channel, output_channel,
kernel_size=1, stride=1, padding=0, has_bias=False, pad_mode="same") kernel_size=1, stride=1, padding=0, has_bias=False, pad_mode="same")
self.bn = nn.BatchNorm2d(output_channel, momentum=0.1, eps=0.0001) self.bn = nn.BatchNorm2d(output_channel, momentum=0.1, eps=0.0001)
self.add = P.TensorAdd() self.add = P.TensorAdd()
self.relu = P.ReLU() self.relu = P.ReLU()
@ -91,7 +90,7 @@ def test_conv_bn_relu_fusion():
def __init__(self): def __init__(self):
super(Net, self).__init__() super(Net, self).__init__()
self.conv = nn.Conv2d(input_channel, output_channel, self.conv = nn.Conv2d(input_channel, output_channel,
kernel_size=1, stride=1, padding=0, has_bias=False, pad_mode="same") kernel_size=1, stride=1, padding=0, has_bias=False, pad_mode="same")
self.bn = nn.BatchNorm2d(output_channel, momentum=0.1, eps=0.0001) self.bn = nn.BatchNorm2d(output_channel, momentum=0.1, eps=0.0001)
self.relu = P.ReLU() self.relu = P.ReLU()
self.mean = P.ReduceMean(keep_dims=True) self.mean = P.ReduceMean(keep_dims=True)
@ -118,7 +117,7 @@ def test_conv_bn_fusion():
def __init__(self): def __init__(self):
super(Net, self).__init__() super(Net, self).__init__()
self.conv = nn.Conv2d(input_channel, output_channel, self.conv = nn.Conv2d(input_channel, output_channel,
kernel_size=1, stride=1, padding=0, has_bias=False, pad_mode="same") kernel_size=1, stride=1, padding=0, has_bias=False, pad_mode="same")
self.bn = nn.BatchNorm2d(output_channel, momentum=0.1, eps=0.0001) self.bn = nn.BatchNorm2d(output_channel, momentum=0.1, eps=0.0001)
self.mean = P.ReduceMean(keep_dims=True) self.mean = P.ReduceMean(keep_dims=True)
self.reshape = P.Reshape() self.reshape = P.Reshape()

View File

@ -13,16 +13,15 @@
# limitations under the License. # limitations under the License.
# ============================================================================ # ============================================================================
import pytest import pytest
from mindspore import Tensor
from mindspore.ops import operations as P
import mindspore.nn as nn
from mindspore.common.api import ms_function
import mindspore.common.dtype as mstype
import numpy as np import numpy as np
import mindspore.context as context import mindspore.context as context
from mindspore.common.initializer import initializer import mindspore.nn as nn
from mindspore.common.parameter import Parameter from mindspore import Tensor
from mindspore.ops import operations as P
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
class Net(nn.Cell): class Net(nn.Cell):
def __init__(self): def __init__(self):
super(Net, self).__init__() super(Net, self).__init__()
@ -35,6 +34,7 @@ class Net(nn.Cell):
x = self.relu(x) x = self.relu(x)
return x return x
@pytest.mark.level0 @pytest.mark.level0
@pytest.mark.platform_arm_ascend_training @pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training @pytest.mark.platform_x86_ascend_training
@ -43,5 +43,4 @@ def test_net():
x = np.random.randn(32, 10).astype(np.float32) x = np.random.randn(32, 10).astype(np.float32)
relu_relu = Net() relu_relu = Net()
output = relu_relu(Tensor(x)) output = relu_relu(Tensor(x))
print(x)
print(output.asnumpy()) print(output.asnumpy())

View File

@ -13,16 +13,15 @@
# limitations under the License. # limitations under the License.
# ============================================================================ # ============================================================================
import pytest import pytest
from mindspore import Tensor
from mindspore.ops import operations as P
import mindspore.nn as nn
from mindspore.common.api import ms_function
import mindspore.common.dtype as mstype
import numpy as np import numpy as np
import mindspore.context as context import mindspore.context as context
from mindspore.common.initializer import initializer import mindspore.nn as nn
from mindspore.common.parameter import Parameter from mindspore import Tensor
from mindspore.ops import operations as P
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
class Net(nn.Cell): class Net(nn.Cell):
def __init__(self): def __init__(self):
super(Net, self).__init__() super(Net, self).__init__()
@ -41,6 +40,7 @@ class Net(nn.Cell):
x = self.relu(x) x = self.relu(x)
return x return x
@pytest.mark.level0 @pytest.mark.level0
@pytest.mark.platform_arm_ascend_training @pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training @pytest.mark.platform_x86_ascend_training
@ -50,5 +50,4 @@ def test_net():
y = np.random.randn(10).astype(np.float32) y = np.random.randn(10).astype(np.float32)
net = Net() net = Net()
output = net(Tensor(x), Tensor(y)) output = net(Tensor(x), Tensor(y))
print(x) print(output.asnumpy())
print(output.asnumpy())

View File

@ -12,15 +12,14 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
# ============================================================================ # ============================================================================
from mindspore import Tensor
from mindspore.ops import operations as P
import mindspore.nn as nn
import mindspore.common.dtype as mstype
import numpy as np import numpy as np
import mindspore.context as context import mindspore.context as context
from mindspore.common.parameter import Parameter import mindspore.nn as nn
from mindspore import Tensor
from mindspore.ops import operations as P
context.set_context(mode=context.GRAPH_MODE, device_id=4, device_target="Ascend") context.set_context(mode=context.GRAPH_MODE, device_id=4, device_target="Ascend")
#context.set_context(enable_task_sink=True)
class Net(nn.Cell): class Net(nn.Cell):
def __init__(self): def __init__(self):
@ -39,6 +38,7 @@ class Net(nn.Cell):
z = self.add(z1, z2) z = self.add(z1, z2)
return z return z
def test_net(): def test_net():
x = np.random.randn(32, 10).astype(np.float32) x = np.random.randn(32, 10).astype(np.float32)
y = np.random.randn(32, 10).astype(np.float32) y = np.random.randn(32, 10).astype(np.float32)
@ -46,6 +46,4 @@ def test_net():
h = np.random.randn(10).astype(np.float32) h = np.random.randn(10).astype(np.float32)
relu_relu = Net() relu_relu = Net()
output = relu_relu(Tensor(x), Tensor(y), Tensor(k), Tensor(h)) output = relu_relu(Tensor(x), Tensor(y), Tensor(k), Tensor(h))
print(x)
print(output.asnumpy()) print(output.asnumpy())

View File

@ -13,17 +13,16 @@
# limitations under the License. # limitations under the License.
# ============================================================================ # ============================================================================
import pytest import pytest
import numpy as np
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor from mindspore import Tensor
from mindspore.ops import operations as P from mindspore.ops import operations as P
from mindspore.ops.operations import _grad_ops as G from mindspore.ops.operations import _grad_ops as G
import mindspore.nn as nn
from mindspore.common.api import ms_function
import mindspore.common.dtype as mstype
import numpy as np
import mindspore.context as context
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
class Net(nn.Cell): class Net(nn.Cell):
def __init__(self): def __init__(self):
super(Net, self).__init__() super(Net, self).__init__()
@ -41,6 +40,7 @@ class Net(nn.Cell):
x = self.relu(x) x = self.relu(x)
return x return x
@pytest.mark.level0 @pytest.mark.level0
@pytest.mark.platform_arm_ascend_training @pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training @pytest.mark.platform_x86_ascend_training
@ -49,5 +49,4 @@ def test_net():
x = np.random.randn(32, 10).astype(np.float32) x = np.random.randn(32, 10).astype(np.float32)
net = Net() net = Net()
output = net(Tensor(x)) output = net(Tensor(x))
print(x) print(output.asnumpy())
print(output.asnumpy())

View File

@ -14,6 +14,7 @@
# ============================================================================ # ============================================================================
import os import os
import filecmp import filecmp
curr_path = os.path.abspath(os.curdir) curr_path = os.path.abspath(os.curdir)
file_memreuse = curr_path + "/mem_reuse_check/memreuse.ir" file_memreuse = curr_path + "/mem_reuse_check/memreuse.ir"
file_normal = curr_path + "/mem_reuse_check/normal_mem.ir" file_normal = curr_path + "/mem_reuse_check/normal_mem.ir"
@ -23,5 +24,3 @@ checker = os.path.exists(file_normal)
assert (checker, True) assert (checker, True)
checker = filecmp.cmp(file_memreuse, file_normal) checker = filecmp.cmp(file_memreuse, file_normal)
assert (checker, True) assert (checker, True)

View File

@ -19,6 +19,7 @@ from mindspore.ops import operations as P
from mindspore.common.initializer import initializer from mindspore.common.initializer import initializer
from mindspore.common import dtype as mstype from mindspore.common import dtype as mstype
def weight_variable(shape): def weight_variable(shape):
return initializer('XavierUniform', shape=shape, dtype=mstype.float32) return initializer('XavierUniform', shape=shape, dtype=mstype.float32)
@ -297,4 +298,3 @@ class ResNet(nn.Cell):
def resnet50(batch_size, num_classes): def resnet50(batch_size, num_classes):
return ResNet(ResidualBlock, [3, 4, 6, 3], num_classes, batch_size) return ResNet(ResidualBlock, [3, 4, 6, 3], num_classes, batch_size)

View File

@ -12,16 +12,17 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
# ============================================================================ # ============================================================================
import mindspore.nn as nn import argparse
from mindspore import Tensor
from mindspore.ops import operations as P
from mindspore.nn.optim.momentum import Momentum
from mindspore.train.model import Model, ParallelMode
from mindspore import context
import mindspore.common.dtype as mstype
import os import os
import numpy as np import numpy as np
import mindspore.ops.functional as F import mindspore.context as context
import mindspore.nn as nn
import mindspore.common.dtype as mstype
from mindspore import Tensor
from mindspore.ops import operations as P
from mindspore.ops import functional as F
from mindspore.nn.optim.momentum import Momentum
from mindspore.train.model import Model, ParallelMode
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor
from mindspore.train.serialization import load_checkpoint, load_param_into_net from mindspore.train.serialization import load_checkpoint, load_param_into_net
import mindspore.dataset as de import mindspore.dataset as de
@ -30,11 +31,11 @@ import mindspore.dataset.transforms.vision.c_transforms as vision
from mindspore.communication.management import init from mindspore.communication.management import init
from resnet import resnet50 from resnet import resnet50
import random import random
random.seed(1) random.seed(1)
np.random.seed(1) np.random.seed(1)
de.config.set_seed(1) de.config.set_seed(1)
import argparse
parser = argparse.ArgumentParser(description='Image classification') parser = argparse.ArgumentParser(description='Image classification')
parser.add_argument('--run_distribute', type=bool, default=False, help='Run distribute') parser.add_argument('--run_distribute', type=bool, default=False, help='Run distribute')
parser.add_argument('--device_num', type=int, default=1, help='Device num.') parser.add_argument('--device_num', type=int, default=1, help='Device num.')
@ -47,9 +48,9 @@ parser.add_argument('--checkpoint_path', type=str, default=None, help='Checkpoin
parser.add_argument('--dataset_path', type=str, default="/var/log/npu/datasets/cifar", help='Dataset path') parser.add_argument('--dataset_path', type=str, default="/var/log/npu/datasets/cifar", help='Dataset path')
args_opt = parser.parse_args() args_opt = parser.parse_args()
device_id=int(os.getenv('DEVICE_ID')) device_id = int(os.getenv('DEVICE_ID'))
data_home=args_opt.dataset_path data_home = args_opt.dataset_path
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
context.set_context(enable_task_sink=True, device_id=device_id) context.set_context(enable_task_sink=True, device_id=device_id)
@ -64,8 +65,8 @@ def create_dataset(repeat_num=1, training=True):
ds = de.Cifar10Dataset(data_dir) ds = de.Cifar10Dataset(data_dir)
if args_opt.run_distribute: if args_opt.run_distribute:
rank_id=int(os.getenv('RANK_ID')) rank_id = int(os.getenv('RANK_ID'))
rank_size=int(os.getenv('RANK_SIZE')) rank_size = int(os.getenv('RANK_SIZE'))
ds = de.Cifar10Dataset(data_dir, num_shards=rank_size, shard_id=rank_id) ds = de.Cifar10Dataset(data_dir, num_shards=rank_size, shard_id=rank_id)
resize_height = 224 resize_height = 224
@ -74,9 +75,9 @@ def create_dataset(repeat_num=1, training=True):
shift = 0.0 shift = 0.0
# define map operations # define map operations
random_crop_op = vision.RandomCrop((32, 32), (4, 4, 4, 4)) # padding_mode default CONSTANT random_crop_op = vision.RandomCrop((32, 32), (4, 4, 4, 4)) # padding_mode default CONSTANT
random_horizontal_op = vision.RandomHorizontalFlip() random_horizontal_op = vision.RandomHorizontalFlip()
resize_op = vision.Resize((resize_height, resize_width)) # interpolation default BILINEAR resize_op = vision.Resize((resize_height, resize_width)) # interpolation default BILINEAR
rescale_op = vision.Rescale(rescale, shift) rescale_op = vision.Rescale(rescale, shift)
normalize_op = vision.Normalize((0.4465, 0.4822, 0.4914), (0.2010, 0.1994, 0.2023)) normalize_op = vision.Normalize((0.4465, 0.4822, 0.4914), (0.2010, 0.1994, 0.2023))
changeswap_op = vision.HWC2CHW() changeswap_op = vision.HWC2CHW()

View File

@ -12,16 +12,17 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
# ============================================================================ # ============================================================================
import mindspore.nn as nn import argparse
from mindspore import Tensor
from mindspore.ops import operations as P
from mindspore.nn.optim.momentum import Momentum
from mindspore.train.model import Model, ParallelMode
from mindspore import context
import mindspore.common.dtype as mstype
import os import os
import numpy as np import numpy as np
import mindspore.ops.functional as F import mindspore.context as context
import mindspore.nn as nn
import mindspore.common.dtype as mstype
from mindspore import Tensor
from mindspore.ops import operations as P
from mindspore.ops import functional as F
from mindspore.nn.optim.momentum import Momentum
from mindspore.train.model import Model, ParallelMode
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor
from mindspore.train.serialization import load_checkpoint, load_param_into_net from mindspore.train.serialization import load_checkpoint, load_param_into_net
import mindspore.dataset as de import mindspore.dataset as de
@ -35,7 +36,6 @@ random.seed(1)
np.random.seed(1) np.random.seed(1)
de.config.set_seed(1) de.config.set_seed(1)
import argparse
parser = argparse.ArgumentParser(description='Image classification') parser = argparse.ArgumentParser(description='Image classification')
parser.add_argument('--run_distribute', type=bool, default=False, help='Run distribute') parser.add_argument('--run_distribute', type=bool, default=False, help='Run distribute')

View File

@ -15,6 +15,7 @@
import os import os
import pytest import pytest
@pytest.mark.level0 @pytest.mark.level0
@pytest.mark.platform_x86_gpu_training @pytest.mark.platform_x86_gpu_training
@pytest.mark.env_single @pytest.mark.env_single
@ -22,6 +23,7 @@ def test_nccl_lenet():
return_code = os.system("mpirun -n 8 pytest -s test_nccl_lenet.py") return_code = os.system("mpirun -n 8 pytest -s test_nccl_lenet.py")
assert(return_code == 0) assert(return_code == 0)
@pytest.mark.level0 @pytest.mark.level0
@pytest.mark.platform_x86_gpu_training @pytest.mark.platform_x86_gpu_training
@pytest.mark.env_single @pytest.mark.env_single
@ -29,6 +31,7 @@ def test_nccl_all_reduce_op():
return_code = os.system("mpirun -n 8 pytest -s test_nccl_all_reduce_op.py") return_code = os.system("mpirun -n 8 pytest -s test_nccl_all_reduce_op.py")
assert(return_code == 0) assert(return_code == 0)
@pytest.mark.level0 @pytest.mark.level0
@pytest.mark.platform_x86_gpu_training @pytest.mark.platform_x86_gpu_training
@pytest.mark.env_single @pytest.mark.env_single
@ -36,6 +39,7 @@ def test_nccl_all_gather_op():
return_code = os.system("mpirun -n 8 pytest -s test_nccl_all_gather_op.py") return_code = os.system("mpirun -n 8 pytest -s test_nccl_all_gather_op.py")
assert(return_code == 0) assert(return_code == 0)
@pytest.mark.level0 @pytest.mark.level0
@pytest.mark.platform_x86_gpu_training @pytest.mark.platform_x86_gpu_training
@pytest.mark.env_single @pytest.mark.env_single

View File

@ -12,23 +12,25 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
# ============================================================================ # ============================================================================
from mindspore import Tensor
from mindspore.ops import operations as P
import mindspore.nn as nn
import numpy as np import numpy as np
import mindspore.context as context import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.ops import operations as P
from mindspore.common.initializer import initializer from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter from mindspore.common.parameter import Parameter
from mindspore.communication.management import init, NCCL_WORLD_COMM_GROUP, get_rank, get_group_size from mindspore.communication.management import init, NCCL_WORLD_COMM_GROUP, get_rank, get_group_size
context.set_context(mode=context.GRAPH_MODE, device_target='GPU') context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
init('nccl') init('nccl')
rank = get_rank() rank = get_rank()
size = get_group_size() size = get_group_size()
x = np.ones([1,1,3,3]).astype(np.float32) * 0.01 * (rank + 1) x = np.ones([1, 1, 3, 3]).astype(np.float32) * 0.01 * (rank + 1)
class Net(nn.Cell): class Net(nn.Cell):
def __init__( self): def __init__(self):
super(Net, self).__init__() super(Net, self).__init__()
self.all_gather = P.AllGather(group=NCCL_WORLD_COMM_GROUP) self.all_gather = P.AllGather(group=NCCL_WORLD_COMM_GROUP)
self.x = Parameter(initializer(Tensor(x), x.shape), name='x') self.x = Parameter(initializer(Tensor(x), x.shape), name='x')
@ -36,6 +38,7 @@ class Net(nn.Cell):
def construct(self): def construct(self):
return self.all_gather(self.x) return self.all_gather(self.x)
def test_AllGather(): def test_AllGather():
all_gather = Net() all_gather = Net()
output = all_gather() output = all_gather()

View File

@ -12,23 +12,25 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
# ============================================================================ # ============================================================================
from mindspore import Tensor
from mindspore.ops import operations as P
import mindspore.nn as nn
import numpy as np import numpy as np
import mindspore.context as context import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.ops import operations as P
from mindspore.common.initializer import initializer from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter from mindspore.common.parameter import Parameter
from mindspore.communication.management import init, NCCL_WORLD_COMM_GROUP, get_rank, get_group_size from mindspore.communication.management import init, NCCL_WORLD_COMM_GROUP, get_rank, get_group_size
context.set_context(mode=context.GRAPH_MODE, device_target='GPU') context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
init('nccl') init('nccl')
rank = get_rank() rank = get_rank()
size = get_group_size() size = get_group_size()
x = np.ones([3,1,3,3]).astype(np.float32) * 0.01 * (rank + 1) x = np.ones([3, 1, 3, 3]).astype(np.float32) * 0.01 * (rank + 1)
class Net(nn.Cell): class Net(nn.Cell):
def __init__( self): def __init__(self):
super(Net, self).__init__() super(Net, self).__init__()
self.x1 = Parameter(initializer(Tensor(x), x.shape), name='x1') self.x1 = Parameter(initializer(Tensor(x), x.shape), name='x1')
self.x2 = Parameter(initializer(Tensor(x), x.shape), name='x2') self.x2 = Parameter(initializer(Tensor(x), x.shape), name='x2')
@ -47,6 +49,7 @@ class Net(nn.Cell):
self.all_reduce2(self.x2), self.all_reduce2(self.x2),
self.all_reduce3(self.x3)) self.all_reduce3(self.x3))
def test_AllReduce(): def test_AllReduce():
all_reduce = Net() all_reduce = Net()
output = all_reduce() output = all_reduce()
@ -58,16 +61,16 @@ def test_AllReduce():
diff0 = output[0].asnumpy() - expect0 diff0 = output[0].asnumpy() - expect0
error0 = np.ones(shape=expect0.shape) * 1.0e-5 error0 = np.ones(shape=expect0.shape) * 1.0e-5
assert np.all(diff0 < error0) assert np.all(diff0 < error0)
assert (output[0].shape() == expect0.shape) assert output[0].shape() == expect0.shape
expect1 = expect0 expect1 = expect0
diff1 = output[1].asnumpy() - expect1 diff1 = output[1].asnumpy() - expect1
error1 = np.ones(shape=expect1.shape) * 1.0e-5 error1 = np.ones(shape=expect1.shape) * 1.0e-5
assert np.all(diff1 < error1) assert np.all(diff1 < error1)
assert (output[1].shape() == expect1.shape) assert output[1].shape() == expect1.shape
expect2 = expect1 expect2 = expect1
diff2 = output[2].asnumpy() - expect2 diff2 = output[2].asnumpy() - expect2
error2 = np.ones(shape=expect2.shape) * 1.0e-5 error2 = np.ones(shape=expect2.shape) * 1.0e-5
assert np.all(diff2 < error2) assert np.all(diff2 < error2)
assert (output[2].shape() == expect2.shape) assert output[2].shape() == expect2.shape

View File

@ -12,16 +12,15 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
# ============================================================================ # ============================================================================
import numpy as np
from mindspore.nn import Dense
import mindspore.nn as nn
import datetime import datetime
import numpy as np
import mindspore.context as context import mindspore.context as context
from mindspore.communication.management import init, NCCL_WORLD_COMM_GROUP, get_rank, get_group_size import mindspore.nn as nn
from mindspore import Tensor
from mindspore.nn.optim import Momentum from mindspore.nn.optim import Momentum
from mindspore.nn import TrainOneStepCell, WithLossCell from mindspore.nn import TrainOneStepCell, WithLossCell
from mindspore.ops import operations as P from mindspore.ops import operations as P
from mindspore.common.tensor import Tensor from mindspore.communication.management import init, get_rank, get_group_size
context.set_context(mode=context.GRAPH_MODE, device_target="GPU") context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
init('nccl') init('nccl')
@ -31,6 +30,7 @@ total = 5000
batch_size = 32 batch_size = 32
mini_batch = total // batch_size mini_batch = total // batch_size
class LeNet(nn.Cell): class LeNet(nn.Cell):
def __init__(self): def __init__(self):
super(LeNet, self).__init__() super(LeNet, self).__init__()
@ -43,15 +43,15 @@ class LeNet(nn.Cell):
self.conv2 = nn.Conv2d(6, 16, (5, 5), weight_init=weight2, pad_mode='valid', stride=1, padding=0) self.conv2 = nn.Conv2d(6, 16, (5, 5), weight_init=weight2, pad_mode='valid', stride=1, padding=0)
self.pool = nn.MaxPool2d(kernel_size=2, stride=2, pad_mode="valid") self.pool = nn.MaxPool2d(kernel_size=2, stride=2, pad_mode="valid")
self.reshape = P.Reshape() self.reshape = P.Reshape()
weight1 = Tensor(np.ones([120, 400]).astype(np.float32) * 0.01) weight1 = Tensor(np.ones([120, 400]).astype(np.float32) * 0.01)
self.fc1 = Dense(400, 120, weight_init=weight1) self.fc1 = nn.Dense(400, 120, weight_init=weight1)
weight2 = Tensor(np.ones([84, 120]).astype(np.float32) * 0.01) weight2 = Tensor(np.ones([84, 120]).astype(np.float32) * 0.01)
self.fc2 = Dense(120, 84, weight_init=weight2) self.fc2 = nn.Dense(120, 84, weight_init=weight2)
weight3 = Tensor(np.ones([10, 84]).astype(np.float32) * 0.01) weight3 = Tensor(np.ones([10, 84]).astype(np.float32) * 0.01)
self.fc3 = Dense(84, 10, weight_init=weight3) self.fc3 = nn.Dense(84, 10, weight_init=weight3)
def construct(self, input_x): def construct(self, input_x):
output = self.conv1(input_x) output = self.conv1(input_x)
@ -66,6 +66,7 @@ class LeNet(nn.Cell):
output = self.fc3(output) output = self.fc3(output)
return output return output
def test_lenet_nccl(): def test_lenet_nccl():
net = LeNet() net = LeNet()
net.set_train() net.set_train()

View File

@ -12,11 +12,11 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
# ============================================================================ # ============================================================================
from mindspore import Tensor
from mindspore.ops import operations as P
import mindspore.nn as nn
import numpy as np import numpy as np
import mindspore.context as context import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.ops import operations as P
from mindspore.common.initializer import initializer from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter from mindspore.common.parameter import Parameter
from mindspore.communication.management import init, NCCL_WORLD_COMM_GROUP, get_rank, get_group_size from mindspore.communication.management import init, NCCL_WORLD_COMM_GROUP, get_rank, get_group_size
@ -27,8 +27,9 @@ rank = get_rank()
size = get_group_size() size = get_group_size()
x = np.ones([size, 1, 3, 3]).astype(np.float32) * 0.01 * (rank + 1) x = np.ones([size, 1, 3, 3]).astype(np.float32) * 0.01 * (rank + 1)
class Net(nn.Cell): class Net(nn.Cell):
def __init__( self): def __init__(self):
super(Net, self).__init__() super(Net, self).__init__()
self.x = Parameter(initializer(Tensor(x), x.shape), name='x') self.x = Parameter(initializer(Tensor(x), x.shape), name='x')
@ -46,6 +47,7 @@ class Net(nn.Cell):
self.reduce_scatter2(self.x), self.reduce_scatter2(self.x),
self.reduce_scatter3(self.x)) self.reduce_scatter3(self.x))
def test_ReduceScatter(): def test_ReduceScatter():
reduce_scatter = Net() reduce_scatter = Net()
output = reduce_scatter() output = reduce_scatter()
@ -53,7 +55,7 @@ def test_ReduceScatter():
sum = np.ones([size, 1, 3, 3]).astype(np.float32) * 0 sum = np.ones([size, 1, 3, 3]).astype(np.float32) * 0
for i in range(size): for i in range(size):
sum += np.ones([size, 1, 3, 3]).astype(np.float32) * 0.01 * (i + 1) sum += np.ones([size, 1, 3, 3]).astype(np.float32) * 0.01 * (i + 1)
expect0 = sum[rank : rank + 1] expect0 = sum[rank: rank + 1]
diff0 = output[0].asnumpy() - expect0 diff0 = output[0].asnumpy() - expect0
error0 = np.ones(shape=expect0.shape) * 1.0e-5 error0 = np.ones(shape=expect0.shape) * 1.0e-5
assert np.all(diff0 < error0) assert np.all(diff0 < error0)

View File

@ -16,6 +16,7 @@ import mindspore.nn as nn
from mindspore.ops import operations as P from mindspore.ops import operations as P
from mindspore.nn import Dense from mindspore.nn import Dense
class AlexNet(nn.Cell): class AlexNet(nn.Cell):
def __init__(self, num_classes=10): def __init__(self, num_classes=10):
super(AlexNet, self).__init__() super(AlexNet, self).__init__()

View File

@ -18,21 +18,22 @@
import os import os
import pytest import pytest
import numpy as np import numpy as np
from numpy import allclose import mindspore.context as context
import mindspore.common.dtype as mstype import mindspore.common.dtype as mstype
import mindspore.dataset.engine.datasets as de import mindspore.dataset.engine.datasets as de
import mindspore.dataset.transforms.c_transforms as C import mindspore.dataset.transforms.c_transforms as C
from mindspore import context from mindspore import Tensor
from mindspore.common.tensor import Tensor
from mindspore.train.model import Model from mindspore.train.model import Model
from mindspore.train.callback import Callback from mindspore.train.callback import Callback
from mindspore.model_zoo.Bert_NEZHA import BertConfig, BertNetworkWithLoss, BertTrainOneStepCell from mindspore.model_zoo.Bert_NEZHA import BertConfig, BertNetworkWithLoss, BertTrainOneStepCell
from mindspore.nn.optim import Momentum from mindspore.nn.optim import Momentum
from mindspore import log as logger from mindspore import log as logger
_current_dir = os.path.dirname(os.path.realpath(__file__)) _current_dir = os.path.dirname(os.path.realpath(__file__))
DATA_DIR = ["/home/workspace/mindspore_dataset/bert/example/examples.tfrecord"] DATA_DIR = ["/home/workspace/mindspore_dataset/bert/example/examples.tfrecord"]
SCHEMA_DIR = "/home/workspace/mindspore_dataset/bert/example/datasetSchema.json" SCHEMA_DIR = "/home/workspace/mindspore_dataset/bert/example/datasetSchema.json"
def get_config(version='base', batch_size=1): def get_config(version='base', batch_size=1):
"""get config""" """get config"""
if version == 'base': if version == 'base':
@ -99,13 +100,14 @@ def get_config(version='base', batch_size=1):
bert_config = BertConfig(batch_size=batch_size) bert_config = BertConfig(batch_size=batch_size)
return bert_config return bert_config
def me_de_train_dataset(): def me_de_train_dataset():
"""test me de train dataset""" """test me de train dataset"""
# apply repeat operations # apply repeat operations
repeat_count = 1 repeat_count = 1
ds = de.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["input_ids", "input_mask", "segment_ids", ds = de.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["input_ids", "input_mask", "segment_ids",
"next_sentence_labels", "masked_lm_positions", "next_sentence_labels", "masked_lm_positions",
"masked_lm_ids", "masked_lm_weights"], shuffle=False) "masked_lm_ids", "masked_lm_weights"], shuffle=False)
type_cast_op = C.TypeCast(mstype.int32) type_cast_op = C.TypeCast(mstype.int32)
ds = ds.map(input_columns="masked_lm_ids", operations=type_cast_op) ds = ds.map(input_columns="masked_lm_ids", operations=type_cast_op)
ds = ds.map(input_columns="masked_lm_positions", operations=type_cast_op) ds = ds.map(input_columns="masked_lm_positions", operations=type_cast_op)
@ -137,6 +139,7 @@ class ModelCallback(Callback):
self.loss_list.append(cb_params.net_outputs.asnumpy()[0]) self.loss_list.append(cb_params.net_outputs.asnumpy()[0])
logger.info("epoch: {}, outputs are {}".format(cb_params.cur_epoch_num, str(cb_params.net_outputs))) logger.info("epoch: {}, outputs are {}".format(cb_params.cur_epoch_num, str(cb_params.net_outputs)))
@pytest.mark.level0 @pytest.mark.level0
@pytest.mark.platform_arm_ascend_training @pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training @pytest.mark.platform_x86_ascend_training
@ -180,7 +183,8 @@ def test_bert_tdt():
expect_out = [12.19179, 11.965041, 11.969687, 11.97815, 11.969171, 12.603289, 12.165594, expect_out = [12.19179, 11.965041, 11.969687, 11.97815, 11.969171, 12.603289, 12.165594,
12.824818, 12.38842, 12.604046] 12.824818, 12.38842, 12.604046]
logger.info("expected loss value output: {}".format(expect_out)) logger.info("expected loss value output: {}".format(expect_out))
assert allclose(loss_value, expect_out, 0.00001, 0.00001) assert np.allclose(loss_value, expect_out, 0.00001, 0.00001)
if __name__ == '__main__': if __name__ == '__main__':
test_bert_tdt() test_bert_tdt()

View File

@ -14,9 +14,10 @@
# ============================================================================ # ============================================================================
import numpy as np import numpy as np
import mindspore.nn as nn import mindspore.nn as nn
from mindspore import Tensor
from mindspore.ops import operations as P from mindspore.ops import operations as P
from mindspore.nn import Dense from mindspore.nn import Dense
from mindspore import Tensor
class LeNet(nn.Cell): class LeNet(nn.Cell):
def __init__(self): def __init__(self):

View File

@ -13,9 +13,10 @@
# limitations under the License. # limitations under the License.
# ============================================================================ # ============================================================================
import numpy as np import numpy as np
from mindspore.common.tensor import Tensor
import mindspore.nn as nn import mindspore.nn as nn
import mindspore.ops.operations as P from mindspore import Tensor
from mindspore.ops import operations as P
def weight_variable(shape): def weight_variable(shape):
ones = np.ones(shape).astype(np.float32) ones = np.ones(shape).astype(np.float32)
@ -37,7 +38,7 @@ def conv3x3(in_channels, out_channels, stride=1, padding=0):
weight_shape = (out_channels, in_channels, 3, 3) weight_shape = (out_channels, in_channels, 3, 3)
weight = weight_variable(weight_shape) weight = weight_variable(weight_shape)
return nn.Conv2d(in_channels, out_channels, return nn.Conv2d(in_channels, out_channels,
kernel_size=3, stride=stride, padding=padding, weight_init=weight, has_bias=False, pad_mode="same") kernel_size=3, stride=stride, padding=padding, weight_init=weight, has_bias=False, pad_mode="same")
def conv1x1(in_channels, out_channels, stride=1, padding=0): def conv1x1(in_channels, out_channels, stride=1, padding=0):
@ -45,7 +46,7 @@ def conv1x1(in_channels, out_channels, stride=1, padding=0):
weight_shape = (out_channels, in_channels, 1, 1) weight_shape = (out_channels, in_channels, 1, 1)
weight = weight_variable(weight_shape) weight = weight_variable(weight_shape)
return nn.Conv2d(in_channels, out_channels, return nn.Conv2d(in_channels, out_channels,
kernel_size=1, stride=stride, padding=padding, weight_init=weight, has_bias=False, pad_mode="same") kernel_size=1, stride=stride, padding=padding, weight_init=weight, has_bias=False, pad_mode="same")
def conv7x7(in_channels, out_channels, stride=1, padding=0): def conv7x7(in_channels, out_channels, stride=1, padding=0):
@ -53,7 +54,7 @@ def conv7x7(in_channels, out_channels, stride=1, padding=0):
weight_shape = (out_channels, in_channels, 7, 7) weight_shape = (out_channels, in_channels, 7, 7)
weight = weight_variable(weight_shape) weight = weight_variable(weight_shape)
return nn.Conv2d(in_channels, out_channels, return nn.Conv2d(in_channels, out_channels,
kernel_size=7, stride=stride, padding=padding, weight_init=weight, has_bias=False, pad_mode="same") kernel_size=7, stride=stride, padding=padding, weight_init=weight, has_bias=False, pad_mode="same")
def bn_with_initialize(out_channels): def bn_with_initialize(out_channels):
@ -63,7 +64,7 @@ def bn_with_initialize(out_channels):
beta = weight_variable_0(shape) beta = weight_variable_0(shape)
gamma = weight_variable_1(shape) gamma = weight_variable_1(shape)
bn = nn.BatchNorm2d(out_channels, momentum=0.1, eps=0.0001, gamma_init=gamma, bn = nn.BatchNorm2d(out_channels, momentum=0.1, eps=0.0001, gamma_init=gamma,
beta_init=beta, moving_mean_init=mean, moving_var_init=var) beta_init=beta, moving_mean_init=mean, moving_var_init=var)
return bn return bn
@ -74,7 +75,7 @@ def bn_with_initialize_last(out_channels):
beta = weight_variable_0(shape) beta = weight_variable_0(shape)
gamma = weight_variable_0(shape) gamma = weight_variable_0(shape)
bn = nn.BatchNorm2d(out_channels, momentum=0.1, eps=0.0001, gamma_init=gamma, bn = nn.BatchNorm2d(out_channels, momentum=0.1, eps=0.0001, gamma_init=gamma,
beta_init=beta, moving_mean_init=mean, moving_var_init=var) beta_init=beta, moving_mean_init=mean, moving_var_init=var)
return bn return bn
@ -294,6 +295,6 @@ class ResNet(nn.Cell):
x = self.fc(x) x = self.fc(x)
return x return x
def resnet50(batch_size, num_classes): def resnet50(batch_size, num_classes):
return ResNet(ResidualBlock, [3, 4, 6, 3], num_classes, batch_size) return ResNet(ResidualBlock, [3, 4, 6, 3], num_classes, batch_size)

View File

@ -13,13 +13,15 @@
# limitations under the License. # limitations under the License.
# ============================================================================ # ============================================================================
import pytest import pytest
from mindspore.nn import TrainOneStepCell, WithLossCell
import mindspore.context as context
from mindspore.nn.optim import Momentum
import numpy as np import numpy as np
import mindspore.context as context
import mindspore.nn as nn import mindspore.nn as nn
from mindspore.ops import operations as P
from mindspore import Tensor from mindspore import Tensor
from mindspore.nn import TrainOneStepCell, WithLossCell
from mindspore.nn.optim import Momentum
from mindspore.ops import operations as P
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
class LeNet(nn.Cell): class LeNet(nn.Cell):
@ -52,9 +54,6 @@ class LeNet(nn.Cell):
return output return output
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
def train(net, data, label): def train(net, data, label):
learning_rate = 0.01 learning_rate = 0.01
momentum = 0.9 momentum = 0.9

View File

@ -19,15 +19,17 @@ from __future__ import print_function
import pytest import pytest
import numpy as np import numpy as np
import mindspore.context as context
import mindspore.nn as nn import mindspore.nn as nn
from mindspore import Tensor
from mindspore.nn.optim import Momentum from mindspore.nn.optim import Momentum
from mindspore.ops import operations as P from mindspore.ops import operations as P
from mindspore.nn import TrainOneStepCell, WithLossCell from mindspore.nn import TrainOneStepCell, WithLossCell
from mindspore import Tensor
from mindspore.common.initializer import initializer from mindspore.common.initializer import initializer
import mindspore.context as context
context.set_context(mode=context.GRAPH_MODE, device_target="GPU") context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
class AlexNet(nn.Cell): class AlexNet(nn.Cell):
def __init__(self, num_classes=10): def __init__(self, num_classes=10):
super(AlexNet, self).__init__() super(AlexNet, self).__init__()
@ -66,6 +68,7 @@ class AlexNet(nn.Cell):
x = self.fc3(x) x = self.fc3(x)
return x return x
@pytest.mark.level0 @pytest.mark.level0
@pytest.mark.platform_x86_gpu_training @pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard @pytest.mark.env_onecard
@ -73,14 +76,14 @@ def test_trainTensor(num_classes=10, epoch=15, batch_size=32):
net = AlexNet(num_classes) net = AlexNet(num_classes)
lr = 0.1 lr = 0.1
momentum = 0.9 momentum = 0.9
optimizer = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, momentum, weight_decay = 0.0001) optimizer = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, momentum, weight_decay=0.0001)
criterion = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True) criterion = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
net_with_criterion = WithLossCell(net, criterion) net_with_criterion = WithLossCell(net, criterion)
train_network = TrainOneStepCell(net_with_criterion, optimizer) train_network = TrainOneStepCell(net_with_criterion, optimizer)
train_network.set_train() train_network.set_train()
losses=[] losses = []
for i in range(0, epoch): for i in range(0, epoch):
data = Tensor(np.ones([batch_size, 3 ,227, 227]).astype(np.float32) * 0.01) data = Tensor(np.ones([batch_size, 3, 227, 227]).astype(np.float32) * 0.01)
label = Tensor(np.ones([batch_size]).astype(np.int32)) label = Tensor(np.ones([batch_size]).astype(np.int32))
loss = train_network(data, label) loss = train_network(data, label)
losses.append(loss) losses.append(loss)

View File

@ -16,16 +16,19 @@
import pytest import pytest
import numpy as np import numpy as np
import mindspore.nn as nn import mindspore.nn as nn
import mindspore.context as context
from mindspore import Tensor
from mindspore.nn.optim import Momentum from mindspore.nn.optim import Momentum
from mindspore.ops import operations as P from mindspore.ops import operations as P
from mindspore.nn import TrainOneStepCell, WithLossCell from mindspore.nn import TrainOneStepCell, WithLossCell
from mindspore.nn import Dense from mindspore.nn import Dense
from mindspore import Tensor
from mindspore.common.initializer import initializer from mindspore.common.initializer import initializer
from mindspore.common import dtype as mstype from mindspore.common import dtype as mstype
import mindspore.context as context
context.set_context(mode=context.GRAPH_MODE, device_target="GPU") context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
class LeNet(nn.Cell): class LeNet(nn.Cell):
def __init__(self): def __init__(self):
super(LeNet, self).__init__() super(LeNet, self).__init__()
@ -65,6 +68,7 @@ def multisteplr(total_steps, gap, base_lr=0.9, gamma=0.1, dtype=mstype.float32):
lr.append(lr_) lr.append(lr_)
return Tensor(np.array(lr), dtype) return Tensor(np.array(lr), dtype)
@pytest.mark.level0 @pytest.mark.level0
@pytest.mark.platform_x86_gpu_training @pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard @pytest.mark.env_onecard
@ -81,7 +85,7 @@ def test_train_lenet():
train_network.set_train() train_network.set_train()
losses = [] losses = []
for i in range(epoch): for i in range(epoch):
data = Tensor(np.ones([net.batch_size, 3 ,32, 32]).astype(np.float32) * 0.01) data = Tensor(np.ones([net.batch_size, 3, 32, 32]).astype(np.float32) * 0.01)
label = Tensor(np.ones([net.batch_size]).astype(np.int32)) label = Tensor(np.ones([net.batch_size]).astype(np.int32))
loss = train_network(data, label) loss = train_network(data, label)
losses.append(loss) losses.append(loss)

View File

@ -15,18 +15,20 @@
import pytest import pytest
import numpy as np import numpy as np
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.nn.optim import Momentum from mindspore.nn.optim import Momentum
from mindspore.ops import operations as P from mindspore.ops import operations as P
from mindspore.nn import TrainOneStepCell, WithLossCell from mindspore.nn import TrainOneStepCell, WithLossCell
from mindspore.nn import Dense from mindspore.nn import Dense
from mindspore import Tensor
from mindspore.common.initializer import initializer from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter from mindspore.common.parameter import Parameter
import mindspore.context as context
import mindspore.nn as nn
context.set_context(mode=context.GRAPH_MODE, device_target="GPU") context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
def InitialLstmWeight(input_size, hidden_size, num_layers, bidirectional, has_bias=False): def InitialLstmWeight(input_size, hidden_size, num_layers, bidirectional, has_bias=False):
num_directions = 1 num_directions = 1
if bidirectional: if bidirectional:
@ -56,6 +58,7 @@ def InitialLstmWeight(input_size, hidden_size, num_layers, bidirectional, has_bi
return h, c, w return h, c, w
class SentimentNet(nn.Cell): class SentimentNet(nn.Cell):
def __init__(self, vocab_size, embed_size, num_hiddens, num_layers, def __init__(self, vocab_size, embed_size, num_hiddens, num_layers,
bidirectional, weight, labels, batch_size): bidirectional, weight, labels, batch_size):
@ -99,6 +102,7 @@ class SentimentNet(nn.Cell):
outputs = self.decoder(encoding) outputs = self.decoder(encoding)
return outputs return outputs
batch_size = 64 batch_size = 64
@pytest.mark.level0 @pytest.mark.level0
@pytest.mark.platform_x86_gpu_training @pytest.mark.platform_x86_gpu_training
@ -130,7 +134,7 @@ def test_LSTM():
train_network.set_train() train_network.set_train()
train_features = Tensor(np.ones([64, max_len]).astype(np.int32)) train_features = Tensor(np.ones([64, max_len]).astype(np.int32))
train_labels = Tensor(np.ones([64,]).astype(np.int32)[0:64]) train_labels = Tensor(np.ones([64, ]).astype(np.int32)[0:64])
losses = [] losses = []
for epoch in range(num_epochs): for epoch in range(num_epochs):
loss = train_network(train_features, train_labels) loss = train_network(train_features, train_labels)

View File

@ -19,36 +19,34 @@ from __future__ import print_function
import pytest import pytest
import numpy as np import numpy as np
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.nn.cell import Cell from mindspore.nn.cell import Cell
from mindspore.nn.layer.conv import Conv2d from mindspore.nn.layer.conv import Conv2d
from mindspore.nn.layer.basic import Flatten from mindspore.nn.layer.basic import Flatten
from mindspore.nn.layer.normalization import BatchNorm2d from mindspore.nn.layer.normalization import BatchNorm2d
from mindspore.nn.layer.pooling import MaxPool2d from mindspore.nn.layer.pooling import MaxPool2d
from mindspore.ops.operations import TensorAdd from mindspore.ops.operations import TensorAdd
import mindspore.nn as nn
from mindspore.nn.optim import Momentum from mindspore.nn.optim import Momentum
from mindspore.ops import operations as P from mindspore.ops import operations as P
from mindspore.nn import TrainOneStepCell, WithLossCell from mindspore.nn import TrainOneStepCell, WithLossCell
from mindspore.nn import Dense from mindspore.nn import Dense
from mindspore import Tensor
from mindspore.common.initializer import initializer from mindspore.common.initializer import initializer
import mindspore.context as context
context.set_context(mode=context.GRAPH_MODE, device_target="GPU") context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
def random_normal_init(shape, mean=0.0, stddev=0.01, seed=None): def random_normal_init(shape, mean=0.0, stddev=0.01, seed=None):
init_value = np.ones(shape).astype(np.float32) * 0.01 init_value = np.ones(shape).astype(np.float32) * 0.01
return Tensor(init_value) return Tensor(init_value)
def variance_scaling_raw(shape): def variance_scaling_raw(shape):
variance_scaling_value = np.ones(shape).astype(np.float32) * 0.01 variance_scaling_value = np.ones(shape).astype(np.float32) * 0.01
return Tensor(variance_scaling_value) return Tensor(variance_scaling_value)
def weight_variable_0(shape): def weight_variable_0(shape):
zeros = np.zeros(shape).astype(np.float32) zeros = np.zeros(shape).astype(np.float32)
return Tensor(zeros) return Tensor(zeros)
@ -323,6 +321,7 @@ class ResNet(Cell):
def resnet50(num_classes): def resnet50(num_classes):
return ResNet(ResidualBlock, [3, 4, 6, 3], num_classes) return ResNet(ResidualBlock, [3, 4, 6, 3], num_classes)
@pytest.mark.level0 @pytest.mark.level0
@pytest.mark.platform_x86_gpu_training @pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard @pytest.mark.env_onecard
@ -335,9 +334,9 @@ def test_trainTensor(num_classes=10, epoch=8, batch_size=1):
net_with_criterion = WithLossCell(net, criterion) net_with_criterion = WithLossCell(net, criterion)
train_network = TrainOneStepCell(net_with_criterion, optimizer) # optimizer train_network = TrainOneStepCell(net_with_criterion, optimizer) # optimizer
train_network.set_train() train_network.set_train()
losses=[] losses = []
for i in range(0, epoch): for i in range(0, epoch):
data = Tensor(np.ones([batch_size, 3 ,224, 224]).astype(np.float32) * 0.01) data = Tensor(np.ones([batch_size, 3, 224, 224]).astype(np.float32) * 0.01)
label = Tensor(np.ones([batch_size]).astype(np.int32)) label = Tensor(np.ones([batch_size]).astype(np.int32))
loss = train_network(data, label) loss = train_network(data, label)
losses.append(loss) losses.append(loss)

View File

@ -13,25 +13,27 @@
# limitations under the License. # limitations under the License.
# ============================================================================ # ============================================================================
""" """
Function: Function:
test network test network
Usage: Usage:
python test_network_main.py --net lenet --target Ascend python test_network_main.py --net lenet --target Ascend
""" """
import os import os
import time import time
import numpy as np import numpy as np
import argparse import argparse
import mindspore.nn as nn
from mindspore.common.tensor import Tensor
from mindspore.nn import TrainOneStepCell, WithLossCell
import mindspore.context as context import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.nn import TrainOneStepCell, WithLossCell
from mindspore.nn.optim import Momentum from mindspore.nn.optim import Momentum
from models.lenet import LeNet from models.lenet import LeNet
from models.resnetv1_5 import resnet50 from models.resnetv1_5 import resnet50
from models.alexnet import AlexNet from models.alexnet import AlexNet
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
def train(net, data, label): def train(net, data, label):
learning_rate = 0.01 learning_rate = 0.01
momentum = 0.9 momentum = 0.9
@ -42,29 +44,31 @@ def train(net, data, label):
train_network = TrainOneStepCell(net_with_criterion, optimizer) # optimizer train_network = TrainOneStepCell(net_with_criterion, optimizer) # optimizer
train_network.set_train() train_network.set_train()
res = train_network(data, label) res = train_network(data, label)
print("+++++++++Loss+++++++++++++")
print(res) print(res)
print("+++++++++++++++++++++++++++")
assert res assert res
def test_resnet50(): def test_resnet50():
data = Tensor(np.ones([32, 3 ,224, 224]).astype(np.float32) * 0.01) data = Tensor(np.ones([32, 3, 224, 224]).astype(np.float32) * 0.01)
label = Tensor(np.ones([32]).astype(np.int32)) label = Tensor(np.ones([32]).astype(np.int32))
net = resnet50(32, 10) net = resnet50(32, 10)
train(net, data, label) train(net, data, label)
def test_lenet(): def test_lenet():
data = Tensor(np.ones([32, 1 ,32, 32]).astype(np.float32) * 0.01) data = Tensor(np.ones([32, 1, 32, 32]).astype(np.float32) * 0.01)
label = Tensor(np.ones([32]).astype(np.int32)) label = Tensor(np.ones([32]).astype(np.int32))
net = LeNet() net = LeNet()
train(net, data, label) train(net, data, label)
def test_alexnet(): def test_alexnet():
data = Tensor(np.ones([32, 3 ,227, 227]).astype(np.float32) * 0.01) data = Tensor(np.ones([32, 3, 227, 227]).astype(np.float32) * 0.01)
label = Tensor(np.ones([32]).astype(np.int32)) label = Tensor(np.ones([32]).astype(np.int32))
net = AlexNet() net = AlexNet()
train(net, data, label) train(net, data, label)
parser = argparse.ArgumentParser(description='MindSpore Testing Network') parser = argparse.ArgumentParser(description='MindSpore Testing Network')
parser.add_argument('--net', default='resnet50', type=str, help='net name') parser.add_argument('--net', default='resnet50', type=str, help='net name')
parser.add_argument('--device', default='Ascend', type=str, help='device target') parser.add_argument('--device', default='Ascend', type=str, help='device target')

View File

@ -14,7 +14,8 @@
# ============================================================================ # ============================================================================
import pytest import pytest
import numpy as np import numpy as np
import time, math import time
import math
import mindspore.nn as nn import mindspore.nn as nn
from mindspore import context, Tensor, ParameterTuple from mindspore import context, Tensor, ParameterTuple
from mindspore.ops import operations as P from mindspore.ops import operations as P
@ -28,6 +29,7 @@ from mindspore.nn.optim import Momentum
np.random.seed(1) np.random.seed(1)
def weight_variable(): def weight_variable():
"""weight initial""" """weight initial"""
return TruncatedNormal(0.02) return TruncatedNormal(0.02)
@ -58,6 +60,7 @@ class LeNet(nn.Cell):
Examples: Examples:
>>> LeNet(num_class=10) >>> LeNet(num_class=10)
""" """
def __init__(self, num_class=10): def __init__(self, num_class=10):
super(LeNet, self).__init__() super(LeNet, self).__init__()
self.num_class = num_class self.num_class = num_class
@ -91,6 +94,7 @@ class CrossEntropyLoss(nn.Cell):
""" """
Define loss for network Define loss for network
""" """
def __init__(self): def __init__(self):
super(CrossEntropyLoss, self).__init__() super(CrossEntropyLoss, self).__init__()
self.cross_entropy = P.SoftmaxCrossEntropyWithLogits() self.cross_entropy = P.SoftmaxCrossEntropyWithLogits()
@ -111,6 +115,7 @@ class GradWrap(nn.Cell):
""" """
GradWrap definition GradWrap definition
""" """
def __init__(self, network): def __init__(self, network):
super(GradWrap, self).__init__() super(GradWrap, self).__init__()
self.network = network self.network = network
@ -154,4 +159,3 @@ def test_ascend_pynative_lenet():
print("======epoch: ", epoch, " loss: ", loss_output.asnumpy(), " cost time: ", cost_time) print("======epoch: ", epoch, " loss: ", loss_output.asnumpy(), " cost time: ", cost_time)
assert(loss_output.asnumpy() < 0.1) assert(loss_output.asnumpy() < 0.1)

View File

@ -33,10 +33,12 @@ SUMMARY_DIR = CUR_DIR + "/test_temp_summary_event_file/"
context.set_context(device_target="Ascend") context.set_context(device_target="Ascend")
class MsWrapper(nn.Cell): class MsWrapper(nn.Cell):
def __init__(self, network): def __init__(self, network):
super(MsWrapper, self).__init__(auto_prefix=False) super(MsWrapper, self).__init__(auto_prefix=False)
self._network = network self._network = network
@ms_function @ms_function
def construct(self, *args): def construct(self, *args):
return self._network(*args) return self._network(*args)
@ -45,14 +47,15 @@ class MsWrapper(nn.Cell):
def me_train_tensor(net, input_np, label_np, epoch_size=2): def me_train_tensor(net, input_np, label_np, epoch_size=2):
context.set_context(mode=context.GRAPH_MODE) context.set_context(mode=context.GRAPH_MODE)
loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True) loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
opt = ApplyMomentum(Tensor(np.array([0.1])), Tensor(np.array([0.9])), filter(lambda x: x.requires_grad, net.get_parameters())) opt = ApplyMomentum(Tensor(np.array([0.1])), Tensor(np.array([0.9])),
filter(lambda x: x.requires_grad, net.get_parameters()))
Model(net, loss, opt) Model(net, loss, opt)
_network = wrap.WithLossCell(net, loss) _network = wrap.WithLossCell(net, loss)
_train_net = MsWrapper(wrap.TrainOneStepCell(_network, opt)) _train_net = MsWrapper(wrap.TrainOneStepCell(_network, opt))
_train_net.set_train() _train_net.set_train()
summary_writer = SummaryRecord(SUMMARY_DIR, file_suffix="_MS_GRAPH", network=_train_net) summary_writer = SummaryRecord(SUMMARY_DIR, file_suffix="_MS_GRAPH", network=_train_net)
for epoch in range(0, epoch_size): for epoch in range(0, epoch_size):
print(f"epoch %d"%(epoch)) print(f"epoch %d" % (epoch))
output = _train_net(Tensor(input_np), Tensor(label_np)) output = _train_net(Tensor(input_np), Tensor(label_np))
summary_writer.record(i) summary_writer.record(i)
print("********output***********") print("********output***********")

View File

@ -108,6 +108,6 @@ def me_scalar_summary(steps, tag=None, value=None):
def test_scalarsummary_scalar1_step10_summaryrecord1(): def test_scalarsummary_scalar1_step10_summaryrecord1():
clean_environment_file(SUMMARY_DIR_ME_TEMP) clean_environment_file(SUMMARY_DIR_ME_TEMP)
output_dict = me_scalar_summary(10) output_dict = me_scalar_summary(10)
print("test_scalarsummary_scalar1_step10_summaryrecord1 \n",output_dict) print("test_scalarsummary_scalar1_step10_summaryrecord1 \n", output_dict)
save_summary_events_file(SUMMARY_DIR_ME_TEMP, SUMMARY_DIR_ME) save_summary_events_file(SUMMARY_DIR_ME_TEMP, SUMMARY_DIR_ME)
clean_environment_file(SUMMARY_DIR_ME) clean_environment_file(SUMMARY_DIR_ME)

View File

@ -24,12 +24,13 @@ import mindspore.nn as nn
from mindspore import context from mindspore import context
from mindspore.train.serialization import save, load, save_checkpoint, load_checkpoint,\ from mindspore.train.serialization import save, load, save_checkpoint, load_checkpoint,\
load_param_into_net, _exec_save_checkpoint,\ load_param_into_net, _exec_save_checkpoint,\
_check_filedir_or_create, _chg_model_file_name_if_same_exist, \ _check_filedir_or_create, _chg_model_file_name_if_same_exist, \
_read_file_last_line, context, export _read_file_last_line, context, export
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend",
enable_task_sink=True, enable_loop_sink=True, enable_ir_fusion=True)
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend",
enable_task_sink=True,enable_loop_sink=True,enable_ir_fusion=True)
def test_resnet50_export(batch_size=1, num_classes=5): def test_resnet50_export(batch_size=1, num_classes=5):
context.set_context(enable_ir_fusion=False) context.set_context(enable_ir_fusion=False)

View File

@ -19,6 +19,7 @@ from mindspore.ops import operations as P
from mindspore.common.initializer import initializer from mindspore.common.initializer import initializer
from mindspore.common import dtype as mstype from mindspore.common import dtype as mstype
def weight_variable(shape): def weight_variable(shape):
return initializer('XavierUniform', shape=shape, dtype=mstype.float32) return initializer('XavierUniform', shape=shape, dtype=mstype.float32)
@ -297,4 +298,3 @@ class ResNet(nn.Cell):
def resnet50(batch_size, num_classes): def resnet50(batch_size, num_classes):
return ResNet(ResidualBlock, [3, 4, 6, 3], num_classes, batch_size) return ResNet(ResidualBlock, [3, 4, 6, 3], num_classes, batch_size)

View File

@ -12,6 +12,7 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
# ============================================================================ # ============================================================================
import argparse
import mindspore.nn as nn import mindspore.nn as nn
from mindspore import Tensor from mindspore import Tensor
from mindspore.ops import operations as P from mindspore.ops import operations as P
@ -35,7 +36,6 @@ random.seed(1)
np.random.seed(1) np.random.seed(1)
ds.config.set_seed(1) ds.config.set_seed(1)
import argparse
parser = argparse.ArgumentParser(description='Image classification') parser = argparse.ArgumentParser(description='Image classification')
parser.add_argument('--run_distribute', type=bool, default=False, help='Run distribute') parser.add_argument('--run_distribute', type=bool, default=False, help='Run distribute')
parser.add_argument('--device_num', type=int, default=1, help='Device num.') parser.add_argument('--device_num', type=int, default=1, help='Device num.')
@ -48,15 +48,16 @@ parser.add_argument('--checkpoint_path', type=str, default=None, help='Checkpoin
parser.add_argument('--dataset_path', type=str, default="/var/log/npu/datasets/cifar", help='Dataset path') parser.add_argument('--dataset_path', type=str, default="/var/log/npu/datasets/cifar", help='Dataset path')
args_opt = parser.parse_args() args_opt = parser.parse_args()
device_id=int(os.getenv('DEVICE_ID')) device_id = int(os.getenv('DEVICE_ID'))
data_home=args_opt.dataset_path data_home = args_opt.dataset_path
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
context.set_context(enable_task_sink=True, device_id=device_id) context.set_context(enable_task_sink=True, device_id=device_id)
context.set_context(enable_loop_sink=True) context.set_context(enable_loop_sink=True)
context.set_context(enable_mem_reuse=True) context.set_context(enable_mem_reuse=True)
def create_dataset(repeat_num=1, training=True): def create_dataset(repeat_num=1, training=True):
data_dir = data_home + "/cifar-10-batches-bin" data_dir = data_home + "/cifar-10-batches-bin"
if not training: if not training:
@ -64,8 +65,8 @@ def create_dataset(repeat_num=1, training=True):
data_set = ds.Cifar10Dataset(data_dir) data_set = ds.Cifar10Dataset(data_dir)
if args_opt.run_distribute: if args_opt.run_distribute:
rank_id=int(os.getenv('RANK_ID')) rank_id = int(os.getenv('RANK_ID'))
rank_size=int(os.getenv('RANK_SIZE')) rank_size = int(os.getenv('RANK_SIZE'))
data_set = ds.Cifar10Dataset(data_dir, num_shards=rank_size, shard_id=rank_id) data_set = ds.Cifar10Dataset(data_dir, num_shards=rank_size, shard_id=rank_id)
resize_height = 224 resize_height = 224
@ -74,9 +75,9 @@ def create_dataset(repeat_num=1, training=True):
shift = 0.0 shift = 0.0
# define map operations # define map operations
random_crop_op = vision.RandomCrop((32, 32), (4, 4, 4, 4)) # padding_mode default CONSTANT random_crop_op = vision.RandomCrop((32, 32), (4, 4, 4, 4)) # padding_mode default CONSTANT
random_horizontal_op = vision.RandomHorizontalFlip() random_horizontal_op = vision.RandomHorizontalFlip()
resize_op = vision.Resize((resize_height, resize_width)) # interpolation default BILINEAR resize_op = vision.Resize((resize_height, resize_width)) # interpolation default BILINEAR
rescale_op = vision.Rescale(rescale, shift) rescale_op = vision.Rescale(rescale, shift)
normalize_op = vision.Normalize((0.4465, 0.4822, 0.4914), (0.2010, 0.1994, 0.2023)) normalize_op = vision.Normalize((0.4465, 0.4822, 0.4914), (0.2010, 0.1994, 0.2023))
changeswap_op = vision.HWC2CHW() changeswap_op = vision.HWC2CHW()
@ -103,6 +104,7 @@ def create_dataset(repeat_num=1, training=True):
return data_set return data_set
class CrossEntropyLoss(nn.Cell): class CrossEntropyLoss(nn.Cell):
def __init__(self): def __init__(self):
super(CrossEntropyLoss, self).__init__() super(CrossEntropyLoss, self).__init__()

View File

@ -112,6 +112,7 @@ class CrossEntropyLoss(nn.Cell):
loss = self.mean(loss, (-1,)) loss = self.mean(loss, (-1,))
return loss return loss
class LossGet(Callback): class LossGet(Callback):
def __init__(self, per_print_times=1): def __init__(self, per_print_times=1):
super(LossGet, self).__init__() super(LossGet, self).__init__()
@ -143,6 +144,7 @@ class LossGet(Callback):
def get_loss(self): def get_loss(self):
return self._loss return self._loss
def train_process(q, device_id, epoch_size, num_classes, device_num, batch_size, enable_hccl): def train_process(q, device_id, epoch_size, num_classes, device_num, batch_size, enable_hccl):
os.system("mkdir " + str(device_id)) os.system("mkdir " + str(device_id))
os.chdir(str(device_id)) os.chdir(str(device_id))