forked from mindspore-Ecosystem/mindspore
!19127 add st test: test_Conv2dBnFoldQuant
Merge pull request !19127 from zhang_sss/add_st_test
This commit is contained in:
commit
a24c0d8efe
|
@ -1351,7 +1351,7 @@ class DenseQuant(Cell):
|
|||
|
||||
Inputs:
|
||||
- **x** (Tensor) - Tensor of shape :math:`(N, C_{in}, H_{in}, W_{in})`.
|
||||
The input dimension is preferably 2D or 4D.
|
||||
The input dimension is preferably 2D or 4D.
|
||||
|
||||
Outputs:
|
||||
Tensor of shape :math:`(N, C_{out}, H_{out}, W_{out})`.
|
||||
|
|
|
@ -0,0 +1,58 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""
|
||||
train Conv2dBnFoldQuant Cell
|
||||
"""
|
||||
|
||||
import pytest
|
||||
import numpy as np
|
||||
from mindspore import nn
|
||||
from mindspore import context
|
||||
from mindspore import Tensor
|
||||
from mindspore.common import set_seed
|
||||
from mindspore.compression.quant import create_quant_config
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self, qconfig):
|
||||
super(Net, self).__init__()
|
||||
self.conv = nn.Conv2dBnFoldQuant(2, 3, kernel_size=(2, 2), stride=(1, 1),
|
||||
pad_mode='valid', quant_config=qconfig)
|
||||
def construct(self, x):
|
||||
return self.conv(x)
|
||||
|
||||
def test_conv2d_bn_fold_quant():
|
||||
set_seed(1)
|
||||
quant_config = create_quant_config()
|
||||
network = Net(quant_config)
|
||||
inputs = Tensor(np.ones([1, 2, 5, 5]).astype(np.float32))
|
||||
label = Tensor(np.ones([1, 3, 4, 4]).astype(np.int32))
|
||||
opt = nn.Momentum(filter(lambda x: x.requires_grad, network.get_parameters()), learning_rate=0.1, momentum=0.9)
|
||||
loss = nn.MSELoss()
|
||||
net_with_loss = nn.WithLossCell(network, loss)
|
||||
train_network = nn.TrainOneStepCell(net_with_loss, opt)
|
||||
train_network.set_train()
|
||||
out_loss = train_network(inputs, label)
|
||||
expect_loss = np.array([0.940427])
|
||||
error = np.array([0.1])
|
||||
diff = out_loss.asnumpy() - expect_loss
|
||||
assert np.all(abs(diff) < error)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_conv2d_bn_fold_quant_ascend():
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
test_conv2d_bn_fold_quant()
|
Loading…
Reference in New Issue