forked from mindspore-Ecosystem/mindspore
!13634 Add GPU HSigmoid and HSigmoidGrad and support dynamic shape
From: @TFbunny Reviewed-by: @robingrosman,@robingrosman,@liangchenghui Signed-off-by: @liangchenghui
This commit is contained in:
commit
6801ef61e0
|
@ -0,0 +1,51 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "backend/kernel_compiler/gpu/cuda_impl/hsigmoid_impl.cuh"
|
||||
|
||||
template <typename T>
|
||||
__global__ void HsigmoidKernel(size_t size, const T *input, T *output) {
|
||||
for (size_t pos = blockIdx.x * blockDim.x + threadIdx.x; pos < size; pos += blockDim.x * gridDim.x) {
|
||||
T value = (input[pos] + static_cast<T>(3)) / static_cast<T>(6);
|
||||
value = value > static_cast<T>(1) ? static_cast<T>(1) : value;
|
||||
output[pos] = value > static_cast<T>(0) ? value : static_cast<T>(0);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
__global__ void HsigmoidGradKernel(size_t size, const T *dout, T *output) {
|
||||
for (size_t pos = blockIdx.x * blockDim.x + threadIdx.x; pos < size; pos += blockDim.x * gridDim.x) {
|
||||
T value = dout[pos] / static_cast<T>(6);
|
||||
value = value > static_cast<T>(1) ? static_cast<T>(0) : value;
|
||||
output[pos] = value > static_cast<T>(0) ? value : static_cast<T>(0);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void CalHSigmoid(const size_t &size, const T *input, T *output, cudaStream_t cuda_stream) {
|
||||
HsigmoidKernel<<<GET_BLOCKS(size), GET_THREADS, 0, cuda_stream>>>(size, input, output);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void CalHSigmoidGrad(const size_t &size, const T *dout, T *output, cudaStream_t cuda_stream) {
|
||||
HsigmoidGradKernel<<<GET_BLOCKS(size), GET_THREADS, 0, cuda_stream>>>(size, dout, output);
|
||||
}
|
||||
|
||||
template void CalHSigmoid<half>(const size_t &size, const half *input, half *output, cudaStream_t cuda_stream);
|
||||
template void CalHSigmoid<float>(const size_t &size, const float *input, float *output, cudaStream_t cuda_stream);
|
||||
|
||||
template void CalHSigmoidGrad<half>(const size_t &size, const half *dout, half *output, cudaStream_t cuda_stream);
|
||||
template void CalHSigmoidGrad<float>(const size_t &size, const float *dout, float *output, cudaStream_t cuda_stream);
|
|
@ -0,0 +1,29 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_CUDA_IMPL_HSIGMOID_IMPL_CUH_
|
||||
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_CUDA_IMPL_HSIGMOID_IMPL_CUH_
|
||||
|
||||
#include <cuda_runtime.h>
|
||||
#include "runtime/device/gpu/cuda_common.h"
|
||||
|
||||
template <typename T>
|
||||
void CalHSigmoid(const size_t &size, const T *input, T *output, cudaStream_t cuda_stream);
|
||||
|
||||
template <typename T>
|
||||
void CalHSigmoidGrad(const size_t &size, const T *dout, T *output, cudaStream_t cuda_stream);
|
||||
|
||||
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_CUDA_IMPL_HSIGMOID_IMPL_CUH_
|
|
@ -0,0 +1,26 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "backend/kernel_compiler/gpu/nn/hsigmoid_gpu_kernel.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
MS_REG_GPU_KERNEL_ONE(HSigmoid, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
HSigmoidKernel, float)
|
||||
MS_REG_GPU_KERNEL_ONE(HSigmoid, KernelAttr().AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16),
|
||||
HSigmoidKernel, half)
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,88 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_HSIGMOID_GPU_KERNEL_H_
|
||||
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_HSIGMOID_GPU_KERNEL_H_
|
||||
|
||||
#include <vector>
|
||||
#include "backend/kernel_compiler/gpu/gpu_kernel.h"
|
||||
#include "backend/kernel_compiler/gpu/gpu_kernel_factory.h"
|
||||
#include "backend/kernel_compiler/gpu/cuda_impl/hsigmoid_impl.cuh"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
template <typename T>
|
||||
class HSigmoidKernel : public GpuKernel {
|
||||
public:
|
||||
HSigmoidKernel() { ResetResource(); }
|
||||
~HSigmoidKernel() override = default;
|
||||
|
||||
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; }
|
||||
const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; }
|
||||
const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; }
|
||||
|
||||
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
|
||||
const std::vector<AddressPtr> &outputs, void *stream_ptr) override {
|
||||
VARIABLE_NOT_USED(workspace);
|
||||
T *input = GetDeviceAddress<T>(inputs, 0);
|
||||
T *output = GetDeviceAddress<T>(outputs, 0);
|
||||
CalHSigmoid(input_size_, input, output, reinterpret_cast<cudaStream_t>(stream_ptr));
|
||||
return true;
|
||||
}
|
||||
|
||||
bool Init(const CNodePtr &kernel_node) override {
|
||||
kernel_node_ = kernel_node;
|
||||
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
|
||||
if (input_num != 1) {
|
||||
MS_LOG(EXCEPTION) << "Input number is " << input_num << ", but HSigmoid needs 1 inputs.";
|
||||
return false;
|
||||
}
|
||||
size_t output_num = AnfAlgo::GetOutputTensorNum(kernel_node);
|
||||
if (output_num != 1) {
|
||||
MS_LOG(EXCEPTION) << "Output number is " << output_num << ", but HSigmoid has 1 output.";
|
||||
return false;
|
||||
}
|
||||
auto input_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
|
||||
input_size_ = 1;
|
||||
for (size_t i = 0; i < input_shape.size(); i++) {
|
||||
input_size_ *= input_shape[i];
|
||||
}
|
||||
InitSizeLists();
|
||||
return true;
|
||||
}
|
||||
|
||||
void ResetResource() noexcept override {
|
||||
input_size_ = 1;
|
||||
input_size_list_.clear();
|
||||
output_size_list_.clear();
|
||||
workspace_size_list_.clear();
|
||||
}
|
||||
|
||||
protected:
|
||||
void InitSizeLists() override {
|
||||
input_size_list_.push_back(input_size_ * sizeof(T));
|
||||
output_size_list_.push_back(input_size_ * sizeof(T));
|
||||
}
|
||||
|
||||
private:
|
||||
size_t input_size_;
|
||||
std::vector<size_t> input_size_list_;
|
||||
std::vector<size_t> output_size_list_;
|
||||
std::vector<size_t> workspace_size_list_;
|
||||
};
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_HSIGMOID_GPU_KERNEL_H_
|
|
@ -0,0 +1,30 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "backend/kernel_compiler/gpu/nn/hsigmoid_grad_gpu_kernel.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
MS_REG_GPU_KERNEL_ONE(
|
||||
HSigmoidGrad,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
HSigmoidGradKernel, float)
|
||||
MS_REG_GPU_KERNEL_ONE(
|
||||
HSigmoidGrad,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat16).AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16),
|
||||
HSigmoidGradKernel, half)
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,91 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_HSIGMOID_GRAD_GPU_KERNEL_H_
|
||||
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_HSIGMOID_GRAD_GPU_KERNEL_H_
|
||||
|
||||
#include <vector>
|
||||
#include "backend/kernel_compiler/gpu/gpu_kernel.h"
|
||||
#include "backend/kernel_compiler/gpu/gpu_kernel_factory.h"
|
||||
#include "backend/kernel_compiler/gpu/cuda_impl/hsigmoid_impl.cuh"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
template <typename T>
|
||||
class HSigmoidGradKernel : public GpuKernel {
|
||||
public:
|
||||
HSigmoidGradKernel() { ResetResource(); }
|
||||
~HSigmoidGradKernel() override = default;
|
||||
|
||||
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; }
|
||||
const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; }
|
||||
const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; }
|
||||
|
||||
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
|
||||
const std::vector<AddressPtr> &outputs, void *stream_ptr) override {
|
||||
VARIABLE_NOT_USED(workspace);
|
||||
T *input = GetDeviceAddress<T>(inputs, 0);
|
||||
T *output = GetDeviceAddress<T>(outputs, 0);
|
||||
CalHSigmoidGrad(input_size_, input, output, reinterpret_cast<cudaStream_t>(stream_ptr));
|
||||
return true;
|
||||
}
|
||||
|
||||
bool Init(const CNodePtr &kernel_node) override {
|
||||
kernel_node_ = kernel_node;
|
||||
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
|
||||
if (input_num != 2) {
|
||||
MS_LOG(EXCEPTION) << "Input number is " << input_num << ", but HSigmoidGrad needs 2 inputs.";
|
||||
return false;
|
||||
}
|
||||
size_t output_num = AnfAlgo::GetOutputTensorNum(kernel_node);
|
||||
if (output_num != 1) {
|
||||
MS_LOG(EXCEPTION) << "Output number is " << output_num << ", but HSigmoidGrad has 1 output.";
|
||||
return false;
|
||||
}
|
||||
auto input_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
|
||||
input_size_ = 1;
|
||||
for (size_t i = 0; i < input_shape.size(); i++) {
|
||||
input_size_ *= input_shape[i];
|
||||
}
|
||||
InitSizeLists();
|
||||
return true;
|
||||
}
|
||||
|
||||
void ResetResource() noexcept override {
|
||||
input_size_ = 1;
|
||||
input_size_list_.clear();
|
||||
output_size_list_.clear();
|
||||
workspace_size_list_.clear();
|
||||
}
|
||||
|
||||
protected:
|
||||
void InitSizeLists() override {
|
||||
input_size_list_.push_back(input_size_ * sizeof(T));
|
||||
// though we are not using this mem, we still need to allocate
|
||||
input_size_list_.push_back(input_size_ * sizeof(T));
|
||||
output_size_list_.push_back(input_size_ * sizeof(T));
|
||||
}
|
||||
|
||||
private:
|
||||
size_t input_size_;
|
||||
std::vector<size_t> input_size_list_;
|
||||
std::vector<size_t> output_size_list_;
|
||||
std::vector<size_t> workspace_size_list_;
|
||||
};
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_HSIGMOID_GRAD_GPU_KERNEL_H_
|
|
@ -59,6 +59,10 @@ AbstractBasePtr InferImplBiasAddGrad(const AnalysisEnginePtr &, const PrimitiveP
|
|||
const AbstractBasePtrList &args_spec_list);
|
||||
AbstractBasePtr InferImplRelu(const AnalysisEnginePtr &, const PrimitivePtr &primitive,
|
||||
const AbstractBasePtrList &args_spec_list);
|
||||
AbstractBasePtr InferImplHSigmoid(const AnalysisEnginePtr &, const PrimitivePtr &primitive,
|
||||
const AbstractBasePtrList &args_spec_list);
|
||||
AbstractBasePtr InferImplHSigmoidGrad(const AnalysisEnginePtr &, const PrimitivePtr &primitive,
|
||||
const AbstractBasePtrList &args_spec_list);
|
||||
AbstractBasePtr InferImplZerosLike(const AnalysisEnginePtr &, const PrimitivePtr &primitive,
|
||||
const AbstractBasePtrList &args_spec_list);
|
||||
AbstractBasePtr InferImplBpropCut(const AnalysisEnginePtr &, const PrimitivePtr &primitive,
|
||||
|
|
|
@ -416,6 +416,20 @@ AbstractBasePtr InferImplRelu(const AnalysisEnginePtr &, const PrimitivePtr &pri
|
|||
return args_spec_list[0]->Broaden();
|
||||
}
|
||||
|
||||
AbstractBasePtr InferImplHSigmoid(const AnalysisEnginePtr &, const PrimitivePtr &primitive,
|
||||
const AbstractBasePtrList &args_spec_list) {
|
||||
// Inputs: a tensor.
|
||||
CheckArgsSize(primitive->name(), args_spec_list, 1);
|
||||
return args_spec_list[0]->Broaden();
|
||||
}
|
||||
|
||||
AbstractBasePtr InferImplHSigmoidGrad(const AnalysisEnginePtr &, const PrimitivePtr &primitive,
|
||||
const AbstractBasePtrList &args_spec_list) {
|
||||
// Inputs: a tensor.
|
||||
CheckArgsSize(primitive->name(), args_spec_list, 2);
|
||||
return args_spec_list[1]->Broaden();
|
||||
}
|
||||
|
||||
AbstractBasePtr InferImplBpropCut(const AnalysisEnginePtr &, const PrimitivePtr &primitive,
|
||||
const AbstractBasePtrList &args_spec_list) {
|
||||
// Inputs: a tensor.
|
||||
|
|
|
@ -132,6 +132,8 @@ PrimitiveEvalImplMap &GetPrimitiveToEvalImplMap() {
|
|||
{prim::kPrimSparseApplyProximalAdagrad, {InferImplSparseApplyProximalAdagrad, nullptr, true}},
|
||||
{prim::kPrimSGD, {InferImplSGD, nullptr, true}},
|
||||
{prim::kPrimCTCGreedyDecoder, {InferImplCTCGreedyDecoder, nullptr, true}},
|
||||
{prim::kPrimHSigmoid, {InferImplHSigmoid, nullptr, true}},
|
||||
{prim::kPrimHSigmoidGrad, {InferImplHSigmoidGrad, nullptr, true}},
|
||||
// Others
|
||||
{prim::kPrimIdentity, {InferImplIdentity, nullptr, true}},
|
||||
{prim::kPrimLoad, {InferImplLoad, nullptr, true}},
|
||||
|
|
|
@ -521,6 +521,8 @@ inline const PrimitivePtr kPrimSubFusion = std::make_shared<Primitive>("SubFusio
|
|||
inline const PrimitivePtr kPrimMulFusion = std::make_shared<Primitive>("MulFusion");
|
||||
inline const PrimitivePtr kPrimSigmoid = std::make_shared<Primitive>("Sigmoid");
|
||||
inline const PrimitivePtr kPrimSigmoidGrad = std::make_shared<Primitive>("SigmoidGrad");
|
||||
inline const PrimitivePtr kPrimHSigmoid = std::make_shared<Primitive>("HSigmoid");
|
||||
inline const PrimitivePtr kPrimHSigmoidGrad = std::make_shared<Primitive>("HSigmoidGrad");
|
||||
inline const PrimitivePtr kPrimClip = std::make_shared<Primitive>("Clip");
|
||||
inline const PrimitivePtr kPrimHardTanh = std::make_shared<Primitive>("HardTanh");
|
||||
inline const PrimitivePtr kPrimDepthWiseConv2DTransposeFusion =
|
||||
|
|
|
@ -0,0 +1,111 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.ops.composite import GradOperation
|
||||
from mindspore.ops.operations import _inner_ops as inner
|
||||
|
||||
class Grad(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(Grad, self).__init__()
|
||||
self.grad = GradOperation(get_all=True, sens_param=True)
|
||||
self.network = network
|
||||
|
||||
def construct(self, input_x, dout):
|
||||
return self.grad(self.network)(input_x, dout)
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.HSigmoid = P.HSigmoid()
|
||||
|
||||
def construct(self, x):
|
||||
return self.HSigmoid(x)
|
||||
|
||||
|
||||
class DynamicNet(nn.Cell):
|
||||
def __init__(self):
|
||||
super(DynamicNet, self).__init__()
|
||||
self.HSigmoid = P.HSigmoid()
|
||||
self.d = inner.GpuConvertToDynamicShape()
|
||||
|
||||
def construct(self, x):
|
||||
x = self.d(x)
|
||||
return self.HSigmoid(x)
|
||||
|
||||
|
||||
def generate_testcases(nptype):
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
x = np.array([-1, -2, 0, 2, 1]).astype(nptype)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
expect = np.array([0.33333334, 0.16666667, 0.5, 0.8333333, 0.6666667]).astype(nptype)
|
||||
np.testing.assert_almost_equal(output.asnumpy(), expect)
|
||||
|
||||
sens = np.array([-1.45, -2.63, 0.34, 6.43, 34.6]).astype(nptype)
|
||||
backward_net = Grad(Net())
|
||||
output = backward_net(Tensor(x), Tensor(sens))
|
||||
expect = np.array([0, 0, 5.66666685e-02, 0, 0]).astype(nptype)
|
||||
np.testing.assert_almost_equal(output[0].asnumpy(), expect)
|
||||
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
|
||||
x = np.array([-1, -2, 0, 2, 1]).astype(nptype)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
expect = np.array([0.33333334, 0.16666667, 0.5, 0.8333333, 0.6666667]).astype(nptype)
|
||||
np.testing.assert_almost_equal(output.asnumpy(), expect)
|
||||
|
||||
sens = np.array([-1.45, -2.63, 0.34, 6.43, 34.6]).astype(nptype)
|
||||
backward_net = Grad(Net())
|
||||
output = backward_net(Tensor(x), Tensor(sens))
|
||||
expect = np.array([0, 0, 5.66666685e-02, 0, 0]).astype(nptype)
|
||||
np.testing.assert_almost_equal(output[0].asnumpy(), expect)
|
||||
|
||||
|
||||
def generate_dynamic_testcase(nptype):
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
x = np.array([-1, -2, 0, 2, 1]).astype(nptype)
|
||||
net = DynamicNet()
|
||||
output = net(Tensor(x))
|
||||
expect = np.array([0.33333334, 0.16666667, 0.5, 0.8333333, 0.6666667]).astype(nptype)
|
||||
np.testing.assert_almost_equal(output.asnumpy(), expect)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_hsigmoid_dynamic_float32():
|
||||
generate_dynamic_testcase(np.float32)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_hsigmoid_float32():
|
||||
generate_testcases(np.float32)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_hsigmoid_float16():
|
||||
generate_testcases(np.float16)
|
Loading…
Reference in New Issue