forked from mindspore-Ecosystem/mindspore
fix waring
This commit is contained in:
parent
4d71b3bd76
commit
59efbb88ec
|
@ -61,27 +61,27 @@ Status PyDSCallback::ExecutePyfunc(py::function f, const CallbackParam &cb_param
|
|||
}
|
||||
return Status::OK();
|
||||
}
|
||||
void PyDSCallback::setBegin(py::function f) {
|
||||
void PyDSCallback::setBegin(const py::function &f) {
|
||||
begin_func_ = f;
|
||||
begin_needed_ = true;
|
||||
}
|
||||
void PyDSCallback::setEnd(py::function f) {
|
||||
void PyDSCallback::setEnd(const py::function &f) {
|
||||
end_func_ = f;
|
||||
end_needed_ = true;
|
||||
}
|
||||
void PyDSCallback::setEpochBegin(py::function f) {
|
||||
void PyDSCallback::setEpochBegin(const py::function &f) {
|
||||
epoch_begin_func_ = f;
|
||||
epoch_begin_needed_ = true;
|
||||
}
|
||||
void PyDSCallback::setEpochEnd(py::function f) {
|
||||
void PyDSCallback::setEpochEnd(const py::function &f) {
|
||||
epoch_end_func_ = f;
|
||||
epoch_end_needed_ = true;
|
||||
}
|
||||
void PyDSCallback::setStepBegin(py::function f) {
|
||||
void PyDSCallback::setStepBegin(const py::function &f) {
|
||||
step_begin_func_ = f;
|
||||
step_begin_needed_ = true;
|
||||
}
|
||||
void PyDSCallback::setStepEnd(py::function f) {
|
||||
void PyDSCallback::setStepEnd(const py::function &f) {
|
||||
step_end_func_ = f;
|
||||
step_end_needed_ = true;
|
||||
}
|
||||
|
|
|
@ -44,12 +44,12 @@ class PyDSCallback : public DSCallback {
|
|||
|
||||
~PyDSCallback() = default;
|
||||
|
||||
void setBegin(py::function f);
|
||||
void setEnd(py::function f);
|
||||
void setEpochBegin(py::function f);
|
||||
void setEpochEnd(py::function f);
|
||||
void setStepBegin(py::function f);
|
||||
void setStepEnd(py::function f);
|
||||
void setBegin(const py::function &f);
|
||||
void setEnd(const py::function &f);
|
||||
void setEpochBegin(const py::function &f);
|
||||
void setEpochEnd(const py::function &f);
|
||||
void setStepBegin(const py::function &f);
|
||||
void setStepEnd(const py::function &f);
|
||||
|
||||
/// \brief actual callback function for begin, needs to be overridden in the derived class
|
||||
/// \param cb_param, callback parameter passed in from DatasetOp when calling the callback
|
||||
|
|
|
@ -508,7 +508,9 @@ Status Tensor::GetItemPtr(uchar **ptr, const std::vector<dsize_t> &index, offset
|
|||
RETURN_IF_NOT_OK(shape_.ToFlatIndex(index, &flat_idx));
|
||||
offset_t length_temp = 0;
|
||||
RETURN_IF_NOT_OK(GetStringAt(flat_idx, ptr, &length_temp));
|
||||
if (length != nullptr) *length = length_temp;
|
||||
if (length != nullptr) {
|
||||
*length = length_temp;
|
||||
}
|
||||
return Status::OK();
|
||||
} else {
|
||||
std::string err = "data type not compatible";
|
||||
|
|
|
@ -68,7 +68,7 @@ class Tensor {
|
|||
Tensor(const Tensor &other) = delete;
|
||||
Tensor &operator=(const Tensor &other) = delete;
|
||||
|
||||
/// Create a tensor using shape and type. This constructor should not be used directly, use CreateFromTensor instead
|
||||
/// Create a tensor using shape and type. This constructor should not be used directly, use CreateFromTensor instead.
|
||||
/// \note The shape and type information should be known and valid
|
||||
/// \note The constructor does not allocate data
|
||||
/// \param shape TensorShape
|
||||
|
|
|
@ -73,7 +73,7 @@ Status CacheClientGreeter::DoServiceStop() {
|
|||
void *tag;
|
||||
while (cq_.Next(&tag, &success)) {
|
||||
auto r = reinterpret_cast<CacheClientRequestTag *>(tag);
|
||||
req_.erase(r->seqNo_);
|
||||
(void)req_.erase(r->seqNo_);
|
||||
}
|
||||
}
|
||||
return Status::OK();
|
||||
|
|
|
@ -408,7 +408,7 @@ void DataSchema::Print(std::ostream &out) const {
|
|||
// Adds a column descriptor to the schema
|
||||
Status DataSchema::AddColumn(const ColDescriptor &cd) {
|
||||
// Sanity check there's not a duplicate name before adding the column
|
||||
for (int32_t i = 0; i < col_descs_.size(); ++i) {
|
||||
for (auto i = 0; i < col_descs_.size(); ++i) {
|
||||
if (col_descs_[i].name() == cd.name()) {
|
||||
std::ostringstream ss;
|
||||
ss << "column name '" << cd.name() << "' already exists in schema.";
|
||||
|
|
|
@ -118,7 +118,7 @@ bool AlbumOp::CheckImageType(const std::string &file_name, bool *valid) {
|
|||
return true;
|
||||
}
|
||||
|
||||
Status AlbumOp::LoadImageTensor(const std::string &image_file_path, uint32_t col_num, TensorRow *row) {
|
||||
Status AlbumOp::LoadImageTensor(const std::string &image_file_path, int32_t col_num, TensorRow *row) {
|
||||
TensorPtr image;
|
||||
std::ifstream fs;
|
||||
fs.open(image_file_path, std::ios::binary | std::ios::in);
|
||||
|
@ -168,7 +168,7 @@ Status AlbumOp::LoadImageTensor(const std::string &image_file_path, uint32_t col
|
|||
return Status::OK();
|
||||
}
|
||||
|
||||
Status AlbumOp::LoadStringArrayTensor(const nlohmann::json &json_obj, uint32_t col_num, TensorRow *row) {
|
||||
Status AlbumOp::LoadStringArrayTensor(const nlohmann::json &json_obj, int32_t col_num, TensorRow *row) {
|
||||
std::vector<std::string> data = json_obj;
|
||||
|
||||
MS_LOG(INFO) << "String array label found: " << data << ".";
|
||||
|
@ -178,7 +178,7 @@ Status AlbumOp::LoadStringArrayTensor(const nlohmann::json &json_obj, uint32_t c
|
|||
return Status::OK();
|
||||
}
|
||||
|
||||
Status AlbumOp::LoadStringTensor(const nlohmann::json &json_obj, uint32_t col_num, TensorRow *row) {
|
||||
Status AlbumOp::LoadStringTensor(const nlohmann::json &json_obj, int32_t col_num, TensorRow *row) {
|
||||
std::string data = json_obj;
|
||||
// now we iterate over the elements in json
|
||||
|
||||
|
@ -189,7 +189,7 @@ Status AlbumOp::LoadStringTensor(const nlohmann::json &json_obj, uint32_t col_nu
|
|||
return Status::OK();
|
||||
}
|
||||
|
||||
Status AlbumOp::LoadIntArrayTensor(const nlohmann::json &json_obj, uint32_t col_num, TensorRow *row) {
|
||||
Status AlbumOp::LoadIntArrayTensor(const nlohmann::json &json_obj, int32_t col_num, TensorRow *row) {
|
||||
TensorPtr label;
|
||||
// consider templating this function to handle all ints
|
||||
if (data_schema_->column(col_num).type() == DataType::DE_INT64) {
|
||||
|
@ -218,7 +218,7 @@ Status AlbumOp::LoadIntArrayTensor(const nlohmann::json &json_obj, uint32_t col_
|
|||
return Status::OK();
|
||||
}
|
||||
|
||||
Status AlbumOp::LoadFloatArrayTensor(const nlohmann::json &json_obj, uint32_t col_num, TensorRow *row) {
|
||||
Status AlbumOp::LoadFloatArrayTensor(const nlohmann::json &json_obj, int32_t col_num, TensorRow *row) {
|
||||
TensorPtr float_array;
|
||||
// consider templating this function to handle all ints
|
||||
if (data_schema_->column(col_num).type() == DataType::DE_FLOAT64) {
|
||||
|
@ -247,7 +247,7 @@ Status AlbumOp::LoadFloatArrayTensor(const nlohmann::json &json_obj, uint32_t co
|
|||
return Status::OK();
|
||||
}
|
||||
|
||||
Status AlbumOp::LoadIDTensor(const std::string &file, uint32_t col_num, TensorRow *row) {
|
||||
Status AlbumOp::LoadIDTensor(const std::string &file, int32_t col_num, TensorRow *row) {
|
||||
if (data_schema_->column(col_num).type() == DataType::DE_STRING) {
|
||||
TensorPtr id;
|
||||
RETURN_IF_NOT_OK(Tensor::CreateScalar<std::string>(file, &id));
|
||||
|
@ -263,7 +263,7 @@ Status AlbumOp::LoadIDTensor(const std::string &file, uint32_t col_num, TensorRo
|
|||
return Status::OK();
|
||||
}
|
||||
|
||||
Status AlbumOp::LoadEmptyTensor(uint32_t col_num, TensorRow *row) {
|
||||
Status AlbumOp::LoadEmptyTensor(int32_t col_num, TensorRow *row) {
|
||||
// hack to get the file name without extension, the 1 is to get rid of the backslash character
|
||||
TensorPtr empty_tensor;
|
||||
RETURN_IF_NOT_OK(Tensor::CreateEmpty(TensorShape({0}), data_schema_->column(col_num).type(), &empty_tensor));
|
||||
|
@ -275,7 +275,7 @@ Status AlbumOp::LoadEmptyTensor(uint32_t col_num, TensorRow *row) {
|
|||
// So we actually have to check what type we want to fill the tensor with.
|
||||
// Float64 doesn't work with reinterpret cast here. Otherwise we limit the float in the schema to
|
||||
// only be float32, seems like a weird limitation to impose
|
||||
Status AlbumOp::LoadFloatTensor(const nlohmann::json &json_obj, uint32_t col_num, TensorRow *row) {
|
||||
Status AlbumOp::LoadFloatTensor(const nlohmann::json &json_obj, int32_t col_num, TensorRow *row) {
|
||||
TensorPtr float_tensor;
|
||||
if (data_schema_->column(col_num).type() == DataType::DE_FLOAT64) {
|
||||
double data = json_obj;
|
||||
|
@ -291,7 +291,7 @@ Status AlbumOp::LoadFloatTensor(const nlohmann::json &json_obj, uint32_t col_num
|
|||
}
|
||||
|
||||
// Loads a tensor with int value, we have to cast the value to type specified in the schema.
|
||||
Status AlbumOp::LoadIntTensor(const nlohmann::json &json_obj, uint32_t col_num, TensorRow *row) {
|
||||
Status AlbumOp::LoadIntTensor(const nlohmann::json &json_obj, int32_t col_num, TensorRow *row) {
|
||||
TensorPtr int_tensor;
|
||||
if (data_schema_->column(col_num).type() == DataType::DE_INT64) {
|
||||
int64_t data = json_obj;
|
||||
|
|
|
@ -88,62 +88,62 @@ class AlbumOp : public MappableLeafOp {
|
|||
/// \param[in] col_num Column num in schema
|
||||
/// \param[in, out] row Tensor row to push to
|
||||
/// \return Status The status code returned
|
||||
Status LoadImageTensor(const std::string &image_file, uint32_t col_num, TensorRow *row);
|
||||
Status LoadImageTensor(const std::string &image_file, int32_t col_num, TensorRow *row);
|
||||
|
||||
/// \brief Load vector of ints to tensor, append tensor to tensor row
|
||||
/// \param[in] json_obj Json object containing multi-dimensional label
|
||||
/// \param[in] col_num Column num in schema
|
||||
/// \param[in, out] row Tensor row to push to
|
||||
/// \return Status The status code returned
|
||||
Status LoadIntArrayTensor(const nlohmann::json &json_obj, uint32_t col_num, TensorRow *row);
|
||||
Status LoadIntArrayTensor(const nlohmann::json &json_obj, int32_t col_num, TensorRow *row);
|
||||
|
||||
/// \brief Load vector of floatss to tensor, append tensor to tensor row
|
||||
/// \param[in] json_obj Json object containing array data
|
||||
/// \param[in] col_num Column num in schema
|
||||
/// \param[in, out] row Tensor row to push to
|
||||
/// \return Status The status code returned
|
||||
Status LoadFloatArrayTensor(const nlohmann::json &json_obj, uint32_t col_num, TensorRow *row);
|
||||
Status LoadFloatArrayTensor(const nlohmann::json &json_obj, int32_t col_num, TensorRow *row);
|
||||
|
||||
/// \brief Load string array into a tensor, append tensor to tensor row
|
||||
/// \param[in] json_obj Json object containing string tensor
|
||||
/// \param[in] col_num Column num in schema
|
||||
/// \param[in, out] row Tensor row to push to
|
||||
/// \return Status The status code returned
|
||||
Status LoadStringArrayTensor(const nlohmann::json &json_obj, uint32_t col_num, TensorRow *row);
|
||||
Status LoadStringArrayTensor(const nlohmann::json &json_obj, int32_t col_num, TensorRow *row);
|
||||
|
||||
/// \brief Load string into a tensor, append tensor to tensor row
|
||||
/// \param[in] json_obj Json object containing string tensor
|
||||
/// \param[in] col_num Column num in schema
|
||||
/// \param[in, out] row Tensor row to push to
|
||||
/// \return Status The status code returned
|
||||
Status LoadStringTensor(const nlohmann::json &json_obj, uint32_t col_num, TensorRow *row);
|
||||
Status LoadStringTensor(const nlohmann::json &json_obj, int32_t col_num, TensorRow *row);
|
||||
|
||||
/// \brief Load float value to tensor row
|
||||
/// \param[in] json_obj Json object containing float
|
||||
/// \param[in] col_num Column num in schema
|
||||
/// \param[in, out] row Tensor row to push to
|
||||
/// \return Status The status code returned
|
||||
Status LoadFloatTensor(const nlohmann::json &json_obj, uint32_t col_num, TensorRow *row);
|
||||
Status LoadFloatTensor(const nlohmann::json &json_obj, int32_t col_num, TensorRow *row);
|
||||
|
||||
/// \brief Load int value to tensor row
|
||||
/// \param[in] json_obj Json object containing int
|
||||
/// \param[in] col_num Column num in schema
|
||||
/// \param[in, out] row Tensor row to push to
|
||||
/// \return Status The status code returned
|
||||
Status LoadIntTensor(const nlohmann::json &json_obj, uint32_t col_num, TensorRow *row);
|
||||
Status LoadIntTensor(const nlohmann::json &json_obj, int32_t col_num, TensorRow *row);
|
||||
|
||||
/// \brief Load empty tensor to tensor row
|
||||
/// \param[in] col_num Column num in schema
|
||||
/// \param[in, out] row Tensor row to push to
|
||||
/// \return Status The status code returned
|
||||
Status LoadEmptyTensor(uint32_t col_num, TensorRow *row);
|
||||
Status LoadEmptyTensor(int32_t col_num, TensorRow *row);
|
||||
|
||||
/// \brief Load id from file name to tensor row
|
||||
/// \param[in] file The file name to get ID from
|
||||
/// \param[in] col_num Column num in schema
|
||||
/// \param[in, out] row Tensor row to push to
|
||||
/// \return Status The status code returned
|
||||
Status LoadIDTensor(const std::string &file, uint32_t col_num, TensorRow *row);
|
||||
Status LoadIDTensor(const std::string &file, int32_t col_num, TensorRow *row);
|
||||
|
||||
/// \brief Load a tensor row according to a json file
|
||||
/// \param[in] row_id_type row_id - id for this tensor row
|
||||
|
|
|
@ -368,7 +368,7 @@ Status CifarOp::CountTotalRows(const std::string &dir, const std::string &usage,
|
|||
Status CifarOp::ComputeColMap() {
|
||||
// set the column name map (base class field)
|
||||
if (column_name_id_map_.empty()) {
|
||||
for (uint32_t i = 0; i < data_schema_->NumColumns(); ++i) {
|
||||
for (int32_t i = 0; i < data_schema_->NumColumns(); ++i) {
|
||||
column_name_id_map_[data_schema_->column(i).name()] = i;
|
||||
}
|
||||
} else {
|
||||
|
|
|
@ -223,7 +223,7 @@ Status MindRecordOp::GetRowFromReader(TensorRow *fetched_row, uint64_t row_id, i
|
|||
|
||||
Status MindRecordOp::LoadTensorRow(TensorRow *tensor_row, const std::vector<uint8_t> &columns_blob,
|
||||
const mindrecord::json &columns_json, const mindrecord::TaskType task_type) {
|
||||
for (uint32_t i_col = 0; i_col < columns_to_load_.size(); i_col++) {
|
||||
for (int32_t i_col = 0; i_col < columns_to_load_.size(); i_col++) {
|
||||
auto column_name = columns_to_load_[i_col];
|
||||
|
||||
// Initialize column parameters
|
||||
|
|
|
@ -31,10 +31,18 @@ Status DatasetCacheImpl::Build() {
|
|||
|
||||
CacheClient::Builder builder;
|
||||
builder.SetSessionId(session_id_).SetCacheMemSz(cache_mem_sz_).SetSpill(spill_);
|
||||
if (hostname_) builder.SetHostname(hostname_.value());
|
||||
if (port_) builder.SetPort(port_.value());
|
||||
if (num_connections_) builder.SetNumConnections(num_connections_.value());
|
||||
if (prefetch_sz_) builder.SetPrefetchSize(prefetch_sz_.value());
|
||||
if (hostname_) {
|
||||
(void)builder.SetHostname(hostname_.value());
|
||||
}
|
||||
if (port_) {
|
||||
(void)builder.SetPort(port_.value());
|
||||
}
|
||||
if (num_connections_) {
|
||||
(void)builder.SetNumConnections(num_connections_.value());
|
||||
}
|
||||
if (prefetch_sz_) {
|
||||
(void)builder.SetPrefetchSize(prefetch_sz_.value());
|
||||
}
|
||||
return builder.Build(&cache_client_);
|
||||
}
|
||||
|
||||
|
|
|
@ -71,13 +71,13 @@ Status EpochCtrlNode::ValidateParams() {
|
|||
}
|
||||
|
||||
// Visitor accepting method for IRNodePass
|
||||
Status EpochCtrlNode::Accept(IRNodePass *p, bool *const modified) {
|
||||
Status EpochCtrlNode::Accept(IRNodePass *const p, bool *const modified) {
|
||||
// Downcast shared pointer then call visitor
|
||||
return p->Visit(shared_from_base<EpochCtrlNode>(), modified);
|
||||
}
|
||||
|
||||
// Visitor accepting method for IRNodePass
|
||||
Status EpochCtrlNode::AcceptAfter(IRNodePass *p, bool *const modified) {
|
||||
Status EpochCtrlNode::AcceptAfter(IRNodePass *const p, bool *const modified) {
|
||||
// Downcast shared pointer then call visitor
|
||||
return p->VisitAfter(shared_from_base<EpochCtrlNode>(), modified);
|
||||
}
|
||||
|
|
|
@ -67,13 +67,13 @@ class EpochCtrlNode : public RepeatNode {
|
|||
/// \param[in] p The node to visit
|
||||
/// \param[out] modified Indicator if the node was modified
|
||||
/// \return Status of the node visit
|
||||
Status Accept(IRNodePass *p, bool *const modified) override;
|
||||
Status Accept(IRNodePass *const p, bool *const modified) override;
|
||||
|
||||
/// \brief Base-class override for accepting IRNodePass visitor
|
||||
/// \param[in] p The node to visit
|
||||
/// \param[out] modified Indicator if the node was modified
|
||||
/// \return Status of the node visit
|
||||
Status AcceptAfter(IRNodePass *p, bool *const modified) override;
|
||||
Status AcceptAfter(IRNodePass *const p, bool *const modified) override;
|
||||
};
|
||||
|
||||
} // namespace dataset
|
||||
|
|
|
@ -83,7 +83,7 @@ Status AlbumNode::Build(std::vector<std::shared_ptr<DatasetOp>> *const node_ops)
|
|||
}
|
||||
|
||||
// Get the shard id of node
|
||||
Status AlbumNode::GetShardId(int32_t *shard_id) {
|
||||
Status AlbumNode::GetShardId(int32_t *const shard_id) {
|
||||
*shard_id = sampler_->ShardId();
|
||||
|
||||
return Status::OK();
|
||||
|
|
|
@ -59,7 +59,7 @@ class AlbumNode : public MappableSourceNode {
|
|||
|
||||
/// \brief Get the shard id of node
|
||||
/// \return Status Status::OK() if get shard id successfully
|
||||
Status GetShardId(int32_t *shard_id) override;
|
||||
Status GetShardId(int32_t *const shard_id) override;
|
||||
|
||||
/// \brief Base-class override for GetDatasetSize
|
||||
/// \param[in] size_getter Shared pointer to DatasetSizeGetter
|
||||
|
|
|
@ -70,7 +70,7 @@ Status MnistNode::Build(std::vector<std::shared_ptr<DatasetOp>> *const node_ops)
|
|||
}
|
||||
|
||||
// Get the shard id of node
|
||||
Status MnistNode::GetShardId(int32_t *shard_id) {
|
||||
Status MnistNode::GetShardId(int32_t *const shard_id) {
|
||||
*shard_id = sampler_->ShardId();
|
||||
|
||||
return Status::OK();
|
||||
|
|
|
@ -58,7 +58,7 @@ class MnistNode : public MappableSourceNode {
|
|||
|
||||
/// \brief Get the shard id of node
|
||||
/// \return Status Status::OK() if get shard id successfully
|
||||
Status GetShardId(int32_t *shard_id) override;
|
||||
Status GetShardId(int32_t *const shard_id) override;
|
||||
|
||||
/// \brief Base-class override for GetDatasetSize
|
||||
/// \param[in] size_getter Shared pointer to DatasetSizeGetter
|
||||
|
|
|
@ -118,7 +118,7 @@ Status RandomNode::Build(std::vector<std::shared_ptr<DatasetOp>> *const node_ops
|
|||
}
|
||||
|
||||
// Get the shard id of node
|
||||
Status RandomNode::GetShardId(int32_t *shard_id) {
|
||||
Status RandomNode::GetShardId(int32_t *const shard_id) {
|
||||
// RandomDataset doesn't support multiple shards
|
||||
*shard_id = 0;
|
||||
return Status::OK();
|
||||
|
|
|
@ -80,7 +80,7 @@ class RandomNode : public NonMappableSourceNode {
|
|||
|
||||
/// \brief Get the shard id of node
|
||||
/// \return Status Status::OK() if get shard id successfully
|
||||
Status GetShardId(int32_t *shard_id) override;
|
||||
Status GetShardId(int32_t *const shard_id) override;
|
||||
|
||||
/// \brief Base-class override for GetDatasetSize
|
||||
/// \param[in] size_getter Shared pointer to DatasetSizeGetter
|
||||
|
|
|
@ -156,7 +156,7 @@ Status TFRecordNode::Build(std::vector<std::shared_ptr<DatasetOp>> *const node_o
|
|||
}
|
||||
|
||||
// Get the shard id of node
|
||||
Status TFRecordNode::GetShardId(int32_t *shard_id) {
|
||||
Status TFRecordNode::GetShardId(int32_t *const shard_id) {
|
||||
*shard_id = shard_id_;
|
||||
|
||||
return Status::OK();
|
||||
|
@ -259,7 +259,7 @@ Status TFRecordNode::Accept(IRNodePass *p, bool *const modified) {
|
|||
}
|
||||
|
||||
// Visitor accepting method for IRNodePass
|
||||
Status TFRecordNode::AcceptAfter(IRNodePass *p, bool *const modified) {
|
||||
Status TFRecordNode::AcceptAfter(IRNodePass *const p, bool *const modified) {
|
||||
// Downcast shared pointer then call visitor
|
||||
return p->VisitAfter(shared_from_base<TFRecordNode>(), modified);
|
||||
}
|
||||
|
|
|
@ -95,7 +95,7 @@ class TFRecordNode : public NonMappableSourceNode {
|
|||
|
||||
/// \brief Get the shard id of node
|
||||
/// \return Status Status::OK() if get shard id successfully
|
||||
Status GetShardId(int32_t *shard_id) override;
|
||||
Status GetShardId(int32_t *const shard_id) override;
|
||||
|
||||
/// \brief Base-class override for GetDatasetSize
|
||||
/// \param[in] size_getter Shared pointer to DatasetSizeGetter
|
||||
|
@ -152,7 +152,7 @@ class TFRecordNode : public NonMappableSourceNode {
|
|||
/// \param[in] p The node to visit
|
||||
/// \param[out] modified Indicator if the node was modified
|
||||
/// \return Status of the node visit
|
||||
Status AcceptAfter(IRNodePass *p, bool *const modified) override;
|
||||
Status AcceptAfter(IRNodePass *const p, bool *const modified) override;
|
||||
|
||||
private:
|
||||
std::vector<std::string> dataset_files_;
|
||||
|
|
|
@ -192,7 +192,7 @@ Status RepeatPass::VisitAfter(std::shared_ptr<TransferNode> node, bool *const mo
|
|||
}
|
||||
|
||||
// Adds an operator to the cached operator stack save area
|
||||
void RepeatPass::AddToCachedNodeStack(std::shared_ptr<DatasetNode> node) { cached_node_stacks_.push(node); }
|
||||
void RepeatPass::AddToCachedNodeStack(const std::shared_ptr<DatasetNode> &node) { cached_node_stacks_.push(node); }
|
||||
|
||||
// Pops an operator from the cached operator stack save area
|
||||
std::shared_ptr<DatasetNode> RepeatPass::PopFromCachedNodeStack() {
|
||||
|
|
|
@ -112,7 +112,7 @@ class RepeatPass : public IRNodePass {
|
|||
/// \brief Adds an operator to the cached stack save area
|
||||
/// \param node - The dataset node to add to cached stack
|
||||
/// \return Status The status code returned
|
||||
void AddToCachedNodeStack(std::shared_ptr<DatasetNode> node);
|
||||
void AddToCachedNodeStack(const std::shared_ptr<DatasetNode> &node);
|
||||
|
||||
/// \brief Pops an operator from the cached stack save area
|
||||
/// \return shared_ptr to the popped dataset node
|
||||
|
|
|
@ -41,9 +41,15 @@ Status CropOp::OutputShape(const std::vector<TensorShape> &inputs, std::vector<T
|
|||
RETURN_IF_NOT_OK(TensorOp::OutputShape(inputs, outputs));
|
||||
outputs.clear();
|
||||
TensorShape out = TensorShape{height_, width_};
|
||||
if (inputs[0].Rank() == 2) outputs.emplace_back(out);
|
||||
if (inputs[0].Rank() == 3) outputs.emplace_back(out.AppendDim(inputs[0][2]));
|
||||
if (!outputs.empty()) return Status::OK();
|
||||
if (inputs[0].Rank() == 2) {
|
||||
(void)outputs.emplace_back(out);
|
||||
}
|
||||
if (inputs[0].Rank() == 3) {
|
||||
(void)outputs.emplace_back(out.AppendDim(inputs[0][2]));
|
||||
}
|
||||
if (!outputs.empty()) {
|
||||
return Status::OK();
|
||||
}
|
||||
return Status(StatusCode::kMDUnexpectedError,
|
||||
"Crop: invalid input shape, expected 2D or 3D input, but got input dimension is:" +
|
||||
std::to_string(inputs[0].Rank()));
|
||||
|
|
|
@ -31,8 +31,12 @@ Status HwcToChwOp::OutputShape(const std::vector<TensorShape> &inputs, std::vect
|
|||
outputs.clear();
|
||||
TensorShape in = inputs[0];
|
||||
TensorShape out = TensorShape{in[2], in[0], in[1]};
|
||||
if (inputs[0].Rank() == 3) outputs.emplace_back(out);
|
||||
if (!outputs.empty()) return Status::OK();
|
||||
if (inputs[0].Rank() == 3) {
|
||||
(void)outputs.emplace_back(out);
|
||||
}
|
||||
if (!outputs.empty()) {
|
||||
return Status::OK();
|
||||
}
|
||||
return Status(
|
||||
StatusCode::kMDUnexpectedError,
|
||||
"HWC2CHW: invalid input shape, expected 3D input, but got input dimension is:" + std::to_string(inputs[0].Rank()));
|
||||
|
|
|
@ -1015,7 +1015,7 @@ std::vector<std::vector<float>> GetDefaultBoxes(BoxesConfig config) {
|
|||
}
|
||||
scales.push_back(1.0f);
|
||||
std::vector<std::vector<float>> default_boxes;
|
||||
for (int i = 0; i < config.feature_size.size(); i++) {
|
||||
for (auto i = 0; i < config.feature_size.size(); i++) {
|
||||
float sk1 = scales[i];
|
||||
float sk2 = scales[i + 1];
|
||||
float sk3 = sqrt(sk1 * sk2);
|
||||
|
@ -1069,10 +1069,10 @@ void ConvertBoxes(std::vector<std::vector<float>> &boxes, const std::vector<std:
|
|||
|
||||
std::vector<int> ApplyNms(const std::vector<std::vector<float>> &all_boxes, std::vector<float> &all_scores, float thres,
|
||||
int max_boxes) {
|
||||
int boxes_num = all_boxes.size();
|
||||
size_t boxes_num = all_boxes.size();
|
||||
std::vector<float> areas(boxes_num);
|
||||
std::vector<int> order(boxes_num);
|
||||
for (int i = 0; i < boxes_num; i++) {
|
||||
for (auto i = 0; i < boxes_num; i++) {
|
||||
if (all_boxes[i].size() < 4) {
|
||||
return {};
|
||||
}
|
||||
|
|
|
@ -410,7 +410,7 @@ bool WarpAffineBilinear(const LiteMat &src, LiteMat &dst, const LiteMat &M, int
|
|||
int *a = &_a[0], *b = a + dst.width_;
|
||||
const int SCALE = 1 << 10;
|
||||
const int B_SIZE = 64;
|
||||
int16_t WH[B_SIZE * B_SIZE * 2];
|
||||
int16_t *WH = new int16_t[B_SIZE * B_SIZE * 2];
|
||||
int16_t A_Ptr[B_SIZE * B_SIZE];
|
||||
int r_delta = SCALE / kTabSz / 2;
|
||||
int x, y, x1, y1;
|
||||
|
@ -449,7 +449,7 @@ bool WarpAffineBilinear(const LiteMat &src, LiteMat &dst, const LiteMat &M, int
|
|||
Remap(src, lite_part, _HW, _matA, borderType, borderValue);
|
||||
}
|
||||
}
|
||||
|
||||
delete[] WH;
|
||||
delete[] _a;
|
||||
return true;
|
||||
}
|
||||
|
|
|
@ -61,9 +61,15 @@ Status RandomCropAndResizeOp::OutputShape(const std::vector<TensorShape> &inputs
|
|||
RETURN_IF_NOT_OK(TensorOp::OutputShape(inputs, outputs));
|
||||
outputs.clear();
|
||||
TensorShape out = TensorShape{target_height_, target_width_};
|
||||
if (inputs[0].Rank() == 2) outputs.emplace_back(out);
|
||||
if (inputs[0].Rank() == 3) outputs.emplace_back(out.AppendDim(inputs[0][2]));
|
||||
if (!outputs.empty()) return Status::OK();
|
||||
if (inputs[0].Rank() == 2) {
|
||||
(void)outputs.emplace_back(out);
|
||||
}
|
||||
if (inputs[0].Rank() == 3) {
|
||||
(void)outputs.emplace_back(out.AppendDim(inputs[0][2]));
|
||||
}
|
||||
if (!outputs.empty()) {
|
||||
return Status::OK();
|
||||
}
|
||||
return Status(StatusCode::kMDUnexpectedError, "RandomCropAndResize: invalid input shape");
|
||||
}
|
||||
Status RandomCropAndResizeOp::GetCropBox(int h_in, int w_in, int *x, int *y, int *crop_height, int *crop_width) {
|
||||
|
|
|
@ -143,9 +143,15 @@ Status RandomCropOp::OutputShape(const std::vector<TensorShape> &inputs, std::ve
|
|||
RETURN_IF_NOT_OK(TensorOp::OutputShape(inputs, outputs));
|
||||
outputs.clear();
|
||||
TensorShape out = TensorShape{crop_height_, crop_width_};
|
||||
if (inputs[0].Rank() == 2) outputs.emplace_back(out);
|
||||
if (inputs[0].Rank() == 3) outputs.emplace_back(out.AppendDim(inputs[0][2]));
|
||||
if (!outputs.empty()) return Status::OK();
|
||||
if (inputs[0].Rank() == 2) {
|
||||
(void)outputs.emplace_back(out);
|
||||
}
|
||||
if (inputs[0].Rank() == 3) {
|
||||
(void)outputs.emplace_back(out.AppendDim(inputs[0][2]));
|
||||
}
|
||||
if (!outputs.empty()) {
|
||||
return Status::OK();
|
||||
}
|
||||
return Status(StatusCode::kMDUnexpectedError,
|
||||
"RandomCrop: invalid input shape, expected 2D or 3D input, but got input dimension is:" +
|
||||
std::to_string(inputs[0].Rank()));
|
||||
|
|
|
@ -61,9 +61,15 @@ Status ResizeOp::OutputShape(const std::vector<TensorShape> &inputs, std::vector
|
|||
outputW = size2_;
|
||||
}
|
||||
TensorShape out = TensorShape{outputH, outputW};
|
||||
if (inputs[0].Rank() == 2) outputs.emplace_back(out);
|
||||
if (inputs[0].Rank() == 3) outputs.emplace_back(out.AppendDim(inputs[0][2]));
|
||||
if (!outputs.empty()) return Status::OK();
|
||||
if (inputs[0].Rank() == 2) {
|
||||
(void)outputs.emplace_back(out);
|
||||
}
|
||||
if (inputs[0].Rank() == 3) {
|
||||
(void)outputs.emplace_back(out.AppendDim(inputs[0][2]));
|
||||
}
|
||||
if (!outputs.empty()) {
|
||||
return Status::OK();
|
||||
}
|
||||
return Status(StatusCode::kMDUnexpectedError, "Resize: invalid input wrong shape.");
|
||||
}
|
||||
} // namespace dataset
|
||||
|
|
|
@ -49,8 +49,8 @@ class UniformAugOp : public TensorOp {
|
|||
std::string Name() const override { return kUniformAugOp; }
|
||||
|
||||
private:
|
||||
int32_t num_ops_;
|
||||
std::vector<std::shared_ptr<TensorOp>> tensor_op_list_;
|
||||
int32_t num_ops_;
|
||||
std::mt19937 rnd_;
|
||||
};
|
||||
} // namespace dataset
|
||||
|
|
|
@ -223,7 +223,7 @@ MSRStatus ShardIndexGenerator::CreateShardNameTable(sqlite3 *db, const std::stri
|
|||
sql = "INSERT INTO SHARD_NAME (NAME) VALUES (:SHARD_NAME);";
|
||||
sqlite3_stmt *stmt = nullptr;
|
||||
if (sqlite3_prepare_v2(db, common::SafeCStr(sql), -1, &stmt, 0) != SQLITE_OK) {
|
||||
if (stmt) {
|
||||
if (stmt != nullptr) {
|
||||
(void)sqlite3_finalize(stmt);
|
||||
}
|
||||
MS_LOG(ERROR) << "SQL error: could not prepare statement, sql: " << sql;
|
||||
|
|
|
@ -877,7 +877,9 @@ std::pair<MSRStatus, std::vector<json>> ShardReader::GetLabels(int page_id, int
|
|||
sqlite3_free(errmsg);
|
||||
}
|
||||
std::vector<json> ret;
|
||||
for (unsigned int i = 0; i < labels_ptr->size(); ++i) ret.emplace_back(json{});
|
||||
for (unsigned int i = 0; i < labels_ptr->size(); ++i) {
|
||||
(void)ret.emplace_back(json{});
|
||||
}
|
||||
for (unsigned int i = 0; i < labels_ptr->size(); ++i) {
|
||||
json construct_json;
|
||||
for (unsigned int j = 0; j < columns.size(); ++j) {
|
||||
|
|
|
@ -482,8 +482,6 @@ def check_filename(path):
|
|||
if filename.startswith(' ') or filename.endswith(' '):
|
||||
raise ValueError("filename should not start/end with space.")
|
||||
|
||||
return True
|
||||
|
||||
|
||||
def check_dir(dataset_dir):
|
||||
"""
|
||||
|
|
|
@ -838,7 +838,6 @@ def check_schema(method):
|
|||
[schema_file], _ = parse_user_args(method, *args, **kwargs)
|
||||
|
||||
if schema_file is not None:
|
||||
type_check(schema_file, (str,), "schema_file")
|
||||
check_file(schema_file)
|
||||
|
||||
return method(self, *args, **kwargs)
|
||||
|
|
|
@ -269,10 +269,6 @@ extern "C" int MDToDApi_GetNext(MDToDApi *pMDToDApi, MDToDResult_t *results) {
|
|||
MS_LOG(INFO) << "Start GetNext [1]" << pMDToDApi;
|
||||
// get next row for dataset
|
||||
std::unordered_map<std::string, std::shared_ptr<Tensor>> row;
|
||||
if (pMDToDApi->_iter == nullptr) {
|
||||
MS_LOG(ERROR) << "GetNext called with no iteratoe. abort";
|
||||
return -1;
|
||||
}
|
||||
// create Execute functions, this replaces Map in Pipeline
|
||||
|
||||
bool ret = pMDToDApi->_iter->GetNextRow(&row);
|
||||
|
|
|
@ -177,7 +177,7 @@ bool AlbumOp::IsReadColumn(const std::string &column_name) {
|
|||
return false;
|
||||
}
|
||||
|
||||
Status AlbumOp::LoadImageTensor(const std::string &image_file_path, uint32_t col_num, TensorPtr *tensor) {
|
||||
Status AlbumOp::LoadImageTensor(const std::string &image_file_path, int32_t col_num, TensorPtr *tensor) {
|
||||
TensorPtr image;
|
||||
TensorPtr rotate_tensor;
|
||||
std::ifstream fs;
|
||||
|
@ -257,7 +257,7 @@ int AlbumOp::GetOrientation(const std::string &folder_path) {
|
|||
return code;
|
||||
}
|
||||
|
||||
Status AlbumOp::LoadStringArrayTensor(const nlohmann::json &json_obj, uint32_t col_num, TensorPtr *tensor) {
|
||||
Status AlbumOp::LoadStringArrayTensor(const nlohmann::json &json_obj, int32_t col_num, TensorPtr *tensor) {
|
||||
std::vector<std::string> data = json_obj.get<std::vector<std::string>>();
|
||||
|
||||
MS_LOG(INFO) << "String array label found: " << data << ".";
|
||||
|
@ -265,7 +265,7 @@ Status AlbumOp::LoadStringArrayTensor(const nlohmann::json &json_obj, uint32_t c
|
|||
return Status::OK();
|
||||
}
|
||||
|
||||
Status AlbumOp::LoadStringTensor(const nlohmann::json &json_obj, uint32_t col_num, TensorPtr *tensor) {
|
||||
Status AlbumOp::LoadStringTensor(const nlohmann::json &json_obj, int32_t col_num, TensorPtr *tensor) {
|
||||
std::string data = json_obj;
|
||||
// now we iterate over the elements in json
|
||||
|
||||
|
@ -275,7 +275,7 @@ Status AlbumOp::LoadStringTensor(const nlohmann::json &json_obj, uint32_t col_nu
|
|||
return Status::OK();
|
||||
}
|
||||
|
||||
Status AlbumOp::LoadIntArrayTensor(const nlohmann::json &json_obj, uint32_t col_num, TensorPtr *tensor) {
|
||||
Status AlbumOp::LoadIntArrayTensor(const nlohmann::json &json_obj, int32_t col_num, TensorPtr *tensor) {
|
||||
// consider templating this function to handle all ints
|
||||
if (data_schema_->column(col_num).type() == DataType::DE_INT64) {
|
||||
std::vector<int64_t> data;
|
||||
|
@ -302,7 +302,7 @@ Status AlbumOp::LoadIntArrayTensor(const nlohmann::json &json_obj, uint32_t col_
|
|||
return Status::OK();
|
||||
}
|
||||
|
||||
Status AlbumOp::LoadFloatArrayTensor(const nlohmann::json &json_obj, uint32_t col_num, TensorPtr *tensor) {
|
||||
Status AlbumOp::LoadFloatArrayTensor(const nlohmann::json &json_obj, int32_t col_num, TensorPtr *tensor) {
|
||||
// consider templating this function to handle all ints
|
||||
if (data_schema_->column(col_num).type() == DataType::DE_FLOAT64) {
|
||||
std::vector<double> data;
|
||||
|
@ -329,7 +329,7 @@ Status AlbumOp::LoadFloatArrayTensor(const nlohmann::json &json_obj, uint32_t co
|
|||
return Status::OK();
|
||||
}
|
||||
|
||||
Status AlbumOp::LoadIDTensor(const std::string &file, uint32_t col_num, TensorPtr *tensor) {
|
||||
Status AlbumOp::LoadIDTensor(const std::string &file, int32_t col_num, TensorPtr *tensor) {
|
||||
if (data_schema_->column(col_num).type() == DataType::DE_STRING) {
|
||||
RETURN_IF_NOT_OK(Tensor::CreateScalar<std::string>(file, tensor));
|
||||
return Status::OK();
|
||||
|
@ -341,7 +341,7 @@ Status AlbumOp::LoadIDTensor(const std::string &file, uint32_t col_num, TensorPt
|
|||
return Status::OK();
|
||||
}
|
||||
|
||||
Status AlbumOp::LoadEmptyTensor(uint32_t col_num, TensorPtr *tensor) {
|
||||
Status AlbumOp::LoadEmptyTensor(int32_t col_num, TensorPtr *tensor) {
|
||||
// hack to get the file name without extension, the 1 is to get rid of the backslash character
|
||||
RETURN_IF_NOT_OK(Tensor::CreateEmpty(TensorShape({0}), data_schema_->column(col_num).type(), tensor));
|
||||
return Status::OK();
|
||||
|
@ -351,7 +351,7 @@ Status AlbumOp::LoadEmptyTensor(uint32_t col_num, TensorPtr *tensor) {
|
|||
// So we actually have to check what type we want to fill the tensor with.
|
||||
// Float64 doesn't work with reinterpret cast here. Otherwise we limit the float in the schema to
|
||||
// only be float32, seems like a weird limitation to impose
|
||||
Status AlbumOp::LoadFloatTensor(const nlohmann::json &json_obj, uint32_t col_num, TensorPtr *tensor) {
|
||||
Status AlbumOp::LoadFloatTensor(const nlohmann::json &json_obj, int32_t col_num, TensorPtr *tensor) {
|
||||
if (data_schema_->column(col_num).type() == DataType::DE_FLOAT64) {
|
||||
double data = json_obj;
|
||||
MS_LOG(INFO) << "double found: " << json_obj << ".";
|
||||
|
@ -365,7 +365,7 @@ Status AlbumOp::LoadFloatTensor(const nlohmann::json &json_obj, uint32_t col_num
|
|||
}
|
||||
|
||||
// Loads a tensor with int value, we have to cast the value to type specified in the schema.
|
||||
Status AlbumOp::LoadIntTensor(const nlohmann::json &json_obj, uint32_t col_num, TensorPtr *tensor) {
|
||||
Status AlbumOp::LoadIntTensor(const nlohmann::json &json_obj, int32_t col_num, TensorPtr *tensor) {
|
||||
if (data_schema_->column(col_num).type() == DataType::DE_INT64) {
|
||||
int64_t data = json_obj;
|
||||
MS_LOG(INFO) << "int64 found: " << json_obj << ".";
|
||||
|
|
|
@ -93,62 +93,62 @@ class AlbumOp {
|
|||
/// \param[in] col_num Column num in schema
|
||||
/// \param[in,out] Tensor to push to
|
||||
/// \return Status The error code returned
|
||||
Status LoadImageTensor(const std::string &image_file, uint32_t col_num, TensorPtr *tensor);
|
||||
Status LoadImageTensor(const std::string &image_file, int32_t col_num, TensorPtr *tensor);
|
||||
|
||||
/// \brief Load vector of ints to tensor, append tensor to tensor
|
||||
/// \param[in] json_obj Json object containing multi-dimensional label
|
||||
/// \param[in] col_num Column num in schema
|
||||
/// \param[in,out] Tensor to push to
|
||||
/// \return Status The error code returned
|
||||
Status LoadIntArrayTensor(const nlohmann::json &json_obj, uint32_t col_num, TensorPtr *tensor);
|
||||
Status LoadIntArrayTensor(const nlohmann::json &json_obj, int32_t col_num, TensorPtr *tensor);
|
||||
|
||||
/// \brief Load vector of floatss to tensor, append tensor to tensor
|
||||
/// \param[in] json_obj Json object containing array data
|
||||
/// \param[in] col_num Column num in schema
|
||||
/// \param[in,out] Tensor to push to
|
||||
/// \return Status The error code returned
|
||||
Status LoadFloatArrayTensor(const nlohmann::json &json_obj, uint32_t col_num, TensorPtr *tensor);
|
||||
Status LoadFloatArrayTensor(const nlohmann::json &json_obj, int32_t col_num, TensorPtr *tensor);
|
||||
|
||||
/// \brief Load string array into a tensor, append tensor to tensor
|
||||
/// \param[in] json_obj Json object containing string tensor
|
||||
/// \param[in] col_num Column num in schema
|
||||
/// \param[in,out] Tensor to push to
|
||||
/// \return Status The error code returned
|
||||
Status LoadStringArrayTensor(const nlohmann::json &json_obj, uint32_t col_num, TensorPtr *tensor);
|
||||
Status LoadStringArrayTensor(const nlohmann::json &json_obj, int32_t col_num, TensorPtr *tensor);
|
||||
|
||||
/// \brief Load string into a tensor, append tensor to tensor
|
||||
/// \param[in] json_obj Json object containing string tensor
|
||||
/// \param[in] col_num Column num in schema
|
||||
/// \param[in,out] Tensor to push to
|
||||
/// \return Status The error code returned
|
||||
Status LoadStringTensor(const nlohmann::json &json_obj, uint32_t col_num, TensorPtr *tensor);
|
||||
Status LoadStringTensor(const nlohmann::json &json_obj, int32_t col_num, TensorPtr *tensor);
|
||||
|
||||
/// \brief Load float value to tensor
|
||||
/// \param[in] json_obj Json object containing float
|
||||
/// \param[in] col_num Column num in schema
|
||||
/// \param[in,out] Tensor to push to
|
||||
/// \return Status The error code returned
|
||||
Status LoadFloatTensor(const nlohmann::json &json_obj, uint32_t col_num, TensorPtr *tensor);
|
||||
Status LoadFloatTensor(const nlohmann::json &json_obj, int32_t col_num, TensorPtr *tensor);
|
||||
|
||||
/// \brief Load int value to tensor
|
||||
/// \param[in] json_obj Json object containing int
|
||||
/// \param[in] col_num Column num in schema
|
||||
/// \param[in,out] Tensor to push to
|
||||
/// \return Status The error code returned
|
||||
Status LoadIntTensor(const nlohmann::json &json_obj, uint32_t col_num, TensorPtr *tensor);
|
||||
Status LoadIntTensor(const nlohmann::json &json_obj, int32_t col_num, TensorPtr *tensor);
|
||||
|
||||
/// \brief Load empty tensor to tensor
|
||||
/// \param[in] col_num Column num in schema
|
||||
/// \param[in,out] Tensor to push to
|
||||
/// \return Status The error code returned
|
||||
Status LoadEmptyTensor(uint32_t col_num, TensorPtr *tensor);
|
||||
Status LoadEmptyTensor(int32_t col_num, TensorPtr *tensor);
|
||||
|
||||
/// \brief Load id from file name to tensor
|
||||
/// \param[in] file The file name to get ID from
|
||||
/// \param[in] col_num Column num in schema
|
||||
/// \param[in,out] Tensor to push to
|
||||
/// \return Status The error code returned
|
||||
Status LoadIDTensor(const std::string &file, uint32_t col_num, TensorPtr *tensor);
|
||||
Status LoadIDTensor(const std::string &file, int32_t col_num, TensorPtr *tensor);
|
||||
|
||||
/// \brief Load a tensor according to a json file
|
||||
/// \param[in] row_id_type row_id - id for this tensor row
|
||||
|
|
|
@ -48,7 +48,7 @@ def test_schema_exception():
|
|||
|
||||
with pytest.raises(TypeError) as info:
|
||||
ds.Schema(1)
|
||||
assert "Argument schema_file with value 1 is not of type [<class 'str'>]" in str(info.value)
|
||||
assert "path: 1 is not string" in str(info.value)
|
||||
|
||||
with pytest.raises(RuntimeError) as info:
|
||||
schema = ds.Schema(SCHEMA_FILE)
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
diff -Npur sqlite-version-3.32.2/src/expr.c sqlite-version-3.32.2-patched/src/expr.c
|
||||
--- sqlite-version-3.32.2/src/expr.c 2020-06-04 08:58:43.000000000 -0400
|
||||
+++ sqlite-version-3.32.2-patched/src/expr.c 2021-04-29 04:06:04.544208700 -0400
|
||||
diff -Npur sqlite-version-3.32.2-new/src/expr.c sqlite-version-3.32.2/src/expr.c
|
||||
--- sqlite-version-3.32.2-new/src/expr.c 2020-06-04 08:58:43.000000000 -0400
|
||||
+++ sqlite-version-3.32.2/src/expr.c 2021-08-04 11:57:45.029230992 -0400
|
||||
@@ -3813,6 +3813,7 @@ expr_code_doover:
|
||||
AggInfo *pAggInfo = pExpr->pAggInfo;
|
||||
struct AggInfo_col *pCol;
|
||||
|
@ -32,9 +32,9 @@ diff -Npur sqlite-version-3.32.2/src/expr.c sqlite-version-3.32.2-patched/src/ex
|
|||
int i;
|
||||
struct SrcCount *p = pWalker->u.pSrcCount;
|
||||
SrcList *pSrc = p->pSrc;
|
||||
diff -Npur sqlite-version-3.32.2/src/global.c sqlite-version-3.32.2-patched/src/global.c
|
||||
--- sqlite-version-3.32.2/src/global.c 2020-06-04 08:58:43.000000000 -0400
|
||||
+++ sqlite-version-3.32.2-patched/src/global.c 2021-04-29 04:06:04.544208700 -0400
|
||||
diff -Npur sqlite-version-3.32.2-new/src/global.c sqlite-version-3.32.2/src/global.c
|
||||
--- sqlite-version-3.32.2-new/src/global.c 2020-06-04 08:58:43.000000000 -0400
|
||||
+++ sqlite-version-3.32.2/src/global.c 2021-08-04 11:57:45.033230992 -0400
|
||||
@@ -300,6 +300,11 @@ sqlite3_uint64 sqlite3NProfileCnt = 0;
|
||||
int sqlite3PendingByte = 0x40000000;
|
||||
#endif
|
||||
|
@ -47,9 +47,9 @@ diff -Npur sqlite-version-3.32.2/src/global.c sqlite-version-3.32.2-patched/src/
|
|||
#include "opcodes.h"
|
||||
/*
|
||||
** Properties of opcodes. The OPFLG_INITIALIZER macro is
|
||||
diff -Npur sqlite-version-3.32.2/src/resolve.c sqlite-version-3.32.2-patched/src/resolve.c
|
||||
--- sqlite-version-3.32.2/src/resolve.c 2020-06-04 08:58:43.000000000 -0400
|
||||
+++ sqlite-version-3.32.2-patched/src/resolve.c 2021-04-29 04:06:04.545208700 -0400
|
||||
diff -Npur sqlite-version-3.32.2-new/src/resolve.c sqlite-version-3.32.2/src/resolve.c
|
||||
--- sqlite-version-3.32.2-new/src/resolve.c 2020-06-04 08:58:43.000000000 -0400
|
||||
+++ sqlite-version-3.32.2/src/resolve.c 2021-08-04 11:57:45.033230992 -0400
|
||||
@@ -1715,6 +1715,14 @@ static int resolveSelectStep(Walker *pWa
|
||||
return WRC_Abort;
|
||||
}
|
||||
|
@ -65,9 +65,9 @@ diff -Npur sqlite-version-3.32.2/src/resolve.c sqlite-version-3.32.2-patched/src
|
|||
}
|
||||
#endif
|
||||
|
||||
diff -Npur sqlite-version-3.32.2/src/select.c sqlite-version-3.32.2-patched/src/select.c
|
||||
--- sqlite-version-3.32.2/src/select.c 2020-06-04 08:58:43.000000000 -0400
|
||||
+++ sqlite-version-3.32.2-patched/src/select.c 2021-04-29 04:07:21.458212191 -0400
|
||||
diff -Npur sqlite-version-3.32.2-new/src/select.c sqlite-version-3.32.2/src/select.c
|
||||
--- sqlite-version-3.32.2-new/src/select.c 2020-06-04 08:58:43.000000000 -0400
|
||||
+++ sqlite-version-3.32.2/src/select.c 2021-08-04 12:27:34.737267443 -0400
|
||||
@@ -15,20 +15,6 @@
|
||||
#include "sqliteInt.h"
|
||||
|
||||
|
@ -89,7 +89,27 @@ diff -Npur sqlite-version-3.32.2/src/select.c sqlite-version-3.32.2-patched/src/
|
|||
** An instance of the following object is used to record information about
|
||||
** how to process the DISTINCT keyword, to simplify passing that information
|
||||
** into the selectInnerLoop() routine.
|
||||
@@ -4426,11 +4412,14 @@ static int pushDownWhereTerms(
|
||||
@@ -2717,9 +2703,7 @@ static int multiSelect(
|
||||
selectOpName(p->op)));
|
||||
rc = sqlite3Select(pParse, p, &uniondest);
|
||||
testcase( rc!=SQLITE_OK );
|
||||
- /* Query flattening in sqlite3Select() might refill p->pOrderBy.
|
||||
- ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
|
||||
- sqlite3ExprListDelete(db, p->pOrderBy);
|
||||
+ assert( p->pOrderBy==0 );
|
||||
pDelete = p->pPrior;
|
||||
p->pPrior = pPrior;
|
||||
p->pOrderBy = 0;
|
||||
@@ -4105,7 +4089,7 @@ static int flattenSubquery(
|
||||
** We look at every expression in the outer query and every place we see
|
||||
** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
|
||||
*/
|
||||
- if( pSub->pOrderBy ){
|
||||
+ if( pSub->pOrderBy && (pParent->selFlags & SF_NoopOrderBy)==0 ){
|
||||
/* At this point, any non-zero iOrderByCol values indicate that the
|
||||
** ORDER BY column expression is identical to the iOrderByCol'th
|
||||
** expression returned by SELECT statement pSub. Since these values
|
||||
@@ -4426,11 +4410,14 @@ static int pushDownWhereTerms(
|
||||
){
|
||||
Expr *pNew;
|
||||
int nChng = 0;
|
||||
|
@ -105,7 +125,7 @@ diff -Npur sqlite-version-3.32.2/src/select.c sqlite-version-3.32.2-patched/src/
|
|||
#endif
|
||||
|
||||
#ifdef SQLITE_DEBUG
|
||||
@@ -5553,7 +5542,9 @@ static void explainSimpleCount(
|
||||
@@ -5553,7 +5540,9 @@ static void explainSimpleCount(
|
||||
static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){
|
||||
if( pExpr->op!=TK_AND ){
|
||||
Select *pS = pWalker->u.pSelect;
|
||||
|
@ -116,7 +136,7 @@ diff -Npur sqlite-version-3.32.2/src/select.c sqlite-version-3.32.2-patched/src/
|
|||
sqlite3 *db = pWalker->pParse->db;
|
||||
Expr *pNew = sqlite3Expr(db, TK_INTEGER, "1");
|
||||
if( pNew ){
|
||||
@@ -5766,6 +5757,9 @@ int sqlite3Select(
|
||||
@@ -5766,6 +5755,9 @@ int sqlite3Select(
|
||||
}
|
||||
if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
|
||||
memset(&sAggInfo, 0, sizeof(sAggInfo));
|
||||
|
@ -126,7 +146,15 @@ diff -Npur sqlite-version-3.32.2/src/select.c sqlite-version-3.32.2-patched/src/
|
|||
#if SELECTTRACE_ENABLED
|
||||
SELECTTRACE(1,pParse,p, ("begin processing:\n", pParse->addrExplain));
|
||||
if( sqlite3SelectTrace & 0x100 ){
|
||||
@@ -5804,19 +5798,6 @@ int sqlite3Select(
|
||||
@@ -5787,6 +5779,7 @@ int sqlite3Select(
|
||||
sqlite3ExprListDelete(db, p->pOrderBy);
|
||||
p->pOrderBy = 0;
|
||||
p->selFlags &= ~SF_Distinct;
|
||||
+ p->selFlags |= SF_NoopOrderBy;
|
||||
}
|
||||
sqlite3SelectPrep(pParse, p, 0);
|
||||
if( pParse->nErr || db->mallocFailed ){
|
||||
@@ -5804,19 +5797,6 @@ int sqlite3Select(
|
||||
generateColumnNames(pParse, p);
|
||||
}
|
||||
|
||||
|
@ -146,7 +174,7 @@ diff -Npur sqlite-version-3.32.2/src/select.c sqlite-version-3.32.2-patched/src/
|
|||
pTabList = p->pSrc;
|
||||
isAgg = (p->selFlags & SF_Aggregate)!=0;
|
||||
memset(&sSort, 0, sizeof(sSort));
|
||||
@@ -6144,7 +6125,7 @@ int sqlite3Select(
|
||||
@@ -6144,7 +6124,7 @@ int sqlite3Select(
|
||||
if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
|
||||
&& sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0
|
||||
#ifndef SQLITE_OMIT_WINDOWFUNC
|
||||
|
@ -155,7 +183,7 @@ diff -Npur sqlite-version-3.32.2/src/select.c sqlite-version-3.32.2-patched/src/
|
|||
#endif
|
||||
){
|
||||
p->selFlags &= ~SF_Distinct;
|
||||
@@ -6791,6 +6772,14 @@ int sqlite3Select(
|
||||
@@ -6791,6 +6771,14 @@ int sqlite3Select(
|
||||
select_end:
|
||||
sqlite3ExprListDelete(db, pMinMaxOrderBy);
|
||||
sqlite3DbFree(db, sAggInfo.aCol);
|
||||
|
@ -170,9 +198,9 @@ diff -Npur sqlite-version-3.32.2/src/select.c sqlite-version-3.32.2-patched/src/
|
|||
sqlite3DbFree(db, sAggInfo.aFunc);
|
||||
#if SELECTTRACE_ENABLED
|
||||
SELECTTRACE(0x1,pParse,p,("end processing\n"));
|
||||
diff -Npur sqlite-version-3.32.2/src/sqliteInt.h sqlite-version-3.32.2-patched/src/sqliteInt.h
|
||||
--- sqlite-version-3.32.2/src/sqliteInt.h 2020-06-04 08:58:43.000000000 -0400
|
||||
+++ sqlite-version-3.32.2-patched/src/sqliteInt.h 2021-04-29 04:06:04.547208700 -0400
|
||||
diff -Npur sqlite-version-3.32.2-new/src/sqliteInt.h sqlite-version-3.32.2/src/sqliteInt.h
|
||||
--- sqlite-version-3.32.2-new/src/sqliteInt.h 2020-06-04 08:58:43.000000000 -0400
|
||||
+++ sqlite-version-3.32.2/src/sqliteInt.h 2021-08-04 12:28:22.825268422 -0400
|
||||
@@ -976,7 +976,12 @@ typedef INT16_TYPE LogEst;
|
||||
*/
|
||||
#if defined(SQLITE_ENABLE_SELECTTRACE)
|
||||
|
@ -211,7 +239,15 @@ diff -Npur sqlite-version-3.32.2/src/sqliteInt.h sqlite-version-3.32.2-patched/s
|
|||
** The datatype ynVar is a signed integer, either 16-bit or 32-bit.
|
||||
** Usually it is 16-bits. But if SQLITE_MAX_VARIABLE_NUMBER is greater
|
||||
** than 32767 we have to make it 32-bit. 16-bit is preferred because
|
||||
@@ -4546,10 +4566,11 @@ extern const unsigned char sqlite3UpperT
|
||||
@@ -3105,6 +3125,7 @@ struct Select {
|
||||
#define SF_WhereBegin 0x0080000 /* Really a WhereBegin() call. Debug Only */
|
||||
#define SF_WinRewrite 0x0100000 /* Window function rewrite accomplished */
|
||||
#define SF_View 0x0200000 /* SELECT statement is a view */
|
||||
+#define SF_NoopOrderBy 0x0400000 /* ORDER BY is ignored for this query */
|
||||
|
||||
/*
|
||||
** The results of a SELECT can be distributed in several ways, as defined
|
||||
@@ -4546,10 +4567,11 @@ extern const unsigned char sqlite3UpperT
|
||||
extern const unsigned char sqlite3CtypeMap[];
|
||||
extern SQLITE_WSD struct Sqlite3Config sqlite3Config;
|
||||
extern FuncDefHash sqlite3BuiltinFunctions;
|
||||
|
@ -224,9 +260,9 @@ diff -Npur sqlite-version-3.32.2/src/sqliteInt.h sqlite-version-3.32.2-patched/s
|
|||
#ifdef VDBE_PROFILE
|
||||
extern sqlite3_uint64 sqlite3NProfileCnt;
|
||||
#endif
|
||||
diff -Npur sqlite-version-3.32.2/src/test1.c sqlite-version-3.32.2-patched/src/test1.c
|
||||
--- sqlite-version-3.32.2/src/test1.c 2020-06-04 08:58:43.000000000 -0400
|
||||
+++ sqlite-version-3.32.2-patched/src/test1.c 2021-04-29 04:06:04.548208700 -0400
|
||||
diff -Npur sqlite-version-3.32.2-new/src/test1.c sqlite-version-3.32.2/src/test1.c
|
||||
--- sqlite-version-3.32.2-new/src/test1.c 2020-06-04 08:58:43.000000000 -0400
|
||||
+++ sqlite-version-3.32.2/src/test1.c 2021-08-04 11:57:45.037230992 -0400
|
||||
@@ -8164,7 +8164,7 @@ int Sqlitetest1_Init(Tcl_Interp *interp)
|
||||
#endif
|
||||
#endif
|
||||
|
@ -236,9 +272,9 @@ diff -Npur sqlite-version-3.32.2/src/test1.c sqlite-version-3.32.2-patched/src/t
|
|||
#endif
|
||||
|
||||
for(i=0; i<sizeof(aCmd)/sizeof(aCmd[0]); i++){
|
||||
diff -Npur sqlite-version-3.32.2/src/window.c sqlite-version-3.32.2-patched/src/window.c
|
||||
--- sqlite-version-3.32.2/src/window.c 2020-06-04 08:58:43.000000000 -0400
|
||||
+++ sqlite-version-3.32.2-patched/src/window.c 2021-04-29 04:06:04.548208700 -0400
|
||||
diff -Npur sqlite-version-3.32.2-new/src/window.c sqlite-version-3.32.2/src/window.c
|
||||
--- sqlite-version-3.32.2-new/src/window.c 2020-06-04 08:58:43.000000000 -0400
|
||||
+++ sqlite-version-3.32.2/src/window.c 2021-08-04 11:57:45.041230992 -0400
|
||||
@@ -942,7 +942,7 @@ static int sqlite3WindowExtraAggFuncDept
|
||||
*/
|
||||
int sqlite3WindowRewrite(Parse *pParse, Select *p){
|
||||
|
@ -248,9 +284,9 @@ diff -Npur sqlite-version-3.32.2/src/window.c sqlite-version-3.32.2-patched/src/
|
|||
Vdbe *v = sqlite3GetVdbe(pParse);
|
||||
sqlite3 *db = pParse->db;
|
||||
Select *pSub = 0; /* The subquery */
|
||||
diff -Npur sqlite-version-3.32.2/test/having.test sqlite-version-3.32.2-patched/test/having.test
|
||||
--- sqlite-version-3.32.2/test/having.test 2020-06-04 08:58:43.000000000 -0400
|
||||
+++ sqlite-version-3.32.2-patched/test/having.test 2021-04-29 04:08:11.785214475 -0400
|
||||
diff -Npur sqlite-version-3.32.2-new/test/having.test sqlite-version-3.32.2/test/having.test
|
||||
--- sqlite-version-3.32.2-new/test/having.test 2020-06-04 08:58:43.000000000 -0400
|
||||
+++ sqlite-version-3.32.2/test/having.test 2021-08-04 11:57:45.041230992 -0400
|
||||
@@ -154,5 +154,24 @@ do_execsql_test 4.3 {
|
||||
SELECT a, sum(b) FROM t3 WHERE nondeter(a) GROUP BY a
|
||||
} {1 4 2 2}
|
||||
|
@ -276,9 +312,39 @@ diff -Npur sqlite-version-3.32.2/test/having.test sqlite-version-3.32.2-patched/
|
|||
+} {b {}}
|
||||
|
||||
finish_test
|
||||
diff -Npur sqlite-version-3.32.2/test/window1.test sqlite-version-3.32.2-patched/test/window1.test
|
||||
--- sqlite-version-3.32.2/test/window1.test 2020-06-04 08:58:43.000000000 -0400
|
||||
+++ sqlite-version-3.32.2-patched/test/window1.test 2021-04-29 04:06:04.549208700 -0400
|
||||
diff -Npur sqlite-version-3.32.2-new/test/selectA.test sqlite-version-3.32.2/test/selectA.test
|
||||
--- sqlite-version-3.32.2-new/test/selectA.test 2020-06-04 08:58:43.000000000 -0400
|
||||
+++ sqlite-version-3.32.2/test/selectA.test 2021-08-04 12:29:43.021270055 -0400
|
||||
@@ -1446,5 +1446,26 @@ do_execsql_test 6.1 {
|
||||
SELECT * FROM (SELECT a FROM t1 UNION SELECT b FROM t2) WHERE a=a;
|
||||
} {12345}
|
||||
|
||||
+# 2020-06-15 ticket 8f157e8010b22af0
|
||||
+#
|
||||
+reset_db
|
||||
+do_execsql_test 7.1 {
|
||||
+ CREATE TABLE t1(c1); INSERT INTO t1 VALUES(12),(123),(1234),(NULL),('abc');
|
||||
+ CREATE TABLE t2(c2); INSERT INTO t2 VALUES(44),(55),(123);
|
||||
+ CREATE TABLE t3(c3,c4); INSERT INTO t3 VALUES(66,1),(123,2),(77,3);
|
||||
+ CREATE VIEW t4 AS SELECT c3 FROM t3;
|
||||
+ CREATE VIEW t5 AS SELECT c3 FROM t3 ORDER BY c4;
|
||||
+}
|
||||
+do_execsql_test 7.2 {
|
||||
+ SELECT * FROM t1, t2 WHERE c1=(SELECT 123 INTERSECT SELECT c2 FROM t4) AND c1=123;
|
||||
+} {123 123}
|
||||
+do_execsql_test 7.3 {
|
||||
+ SELECT * FROM t1, t2 WHERE c1=(SELECT 123 INTERSECT SELECT c2 FROM t5) AND c1=123;
|
||||
+} {123 123}
|
||||
+do_execsql_test 7.4 {
|
||||
+ CREATE TABLE a(b);
|
||||
+ CREATE VIEW c(d) AS SELECT b FROM a ORDER BY b;
|
||||
+ SELECT sum(d) OVER( PARTITION BY(SELECT 0 FROM c JOIN a WHERE b =(SELECT b INTERSECT SELECT d FROM c) AND b = 123)) FROM c;
|
||||
+} {}
|
||||
|
||||
finish_test
|
||||
diff -Npur sqlite-version-3.32.2-new/test/window1.test sqlite-version-3.32.2/test/window1.test
|
||||
--- sqlite-version-3.32.2-new/test/window1.test 2020-06-04 08:58:43.000000000 -0400
|
||||
+++ sqlite-version-3.32.2/test/window1.test 2021-08-04 11:57:45.041230992 -0400
|
||||
@@ -1743,5 +1743,47 @@ do_execsql_test 53.0 {
|
||||
WHERE a.c);
|
||||
} {4 4 4 4}
|
||||
|
|
Loading…
Reference in New Issue