mindspore/tests/ut/python/parallel/test_broadcast_dict.py

72 lines
2.3 KiB
Python

# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor, Parameter
from mindspore.communication.management import init
from mindspore.ops import operations as P
class DataParallelNet(nn.Cell):
def __init__(self):
super(DataParallelNet, self).__init__()
weight_init = np.random.rand(512, 64).astype(np.float32)
self.weight = Parameter(Tensor(weight_init), name="weight", layerwise_parallel=False)
self.fc = P.MatMul()
def construct(self, x):
x = self.fc(x, self.weight)
return x
class ModelParallelNet(nn.Cell):
def __init__(self):
super(ModelParallelNet, self).__init__()
weight_init = np.random.rand(512, 64).astype(np.float32)
self.weight = Parameter(Tensor(weight_init), name="weight", layerwise_parallel=True)
self.fc = P.MatMul()
def construct(self, x):
x = self.fc(x, self.weight)
return x
def test_param_broadcast():
context.set_context(mode=context.GRAPH_MODE)
context.reset_auto_parallel_context()
context.set_auto_parallel_context(parallel_mode="data_parallel", parameter_broadcast=True)
init()
network = DataParallelNet()
network.set_train()
predict = Tensor(np.ones([64, 512]).astype(np.float32) * 0.01)
_ = network(predict)
context.reset_auto_parallel_context()
def test_param_not_broadcast():
context.set_context(mode=context.GRAPH_MODE)
context.reset_auto_parallel_context()
context.set_auto_parallel_context(parallel_mode="data_parallel", parameter_broadcast=False)
init()
network = ModelParallelNet()
network.set_train()
predict = Tensor(np.ones([64, 512]).astype(np.float32) * 0.01)
_ = network(predict)
context.reset_auto_parallel_context()