mindspore/tests/ut/python/parallel/test_strategy_checkpoint.py

265 lines
11 KiB
Python

# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
from mindspore import context
from mindspore.context import set_auto_parallel_context, reset_auto_parallel_context
import mindspore.nn as nn
from mindspore.ops import operations as P
from mindspore import Tensor, Parameter
from tests.ut.python.ops.test_math_ops import VirtualLoss
import mindspore as ms
from mindspore.common.api import _executor
from mindspore.ops import composite as C
# model_parallel test
def test_six_matmul_save():
class NetWithLoss(nn.Cell):
def __init__(self, network):
super(NetWithLoss, self).__init__()
self.loss = VirtualLoss()
self.network = network
def construct(self, x1, x6):
predict = self.network(x1, x6)
return self.loss(predict)
class GradWrap(nn.Cell):
def __init__(self, network):
super(GradWrap, self).__init__()
self.network = network
def construct(self, x1, x6):
return C.grad_all(self.network)(x1, x6)
class Net(nn.Cell):
def __init__(self, strategy1, strategy2, strategy3, strategy4, strategy5, strategy6):
super().__init__()
self.matmul1 = P.MatMul().set_strategy(strategy1)
self.matmul2 = P.MatMul().set_strategy(strategy2)
self.matmul3 = P.MatMul().set_strategy(strategy3)
self.matmul4 = P.MatMul().set_strategy(strategy4)
self.matmul5 = P.MatMul().set_strategy(strategy5)
self.matmul6 = P.MatMul().set_strategy(strategy6)
self.weight1 = Parameter(Tensor(np.ones([32, 64]), dtype=ms.float32), name="weight1")
self.weight2 = Parameter(Tensor(np.ones([64, 64]), dtype=ms.float32), name="weight2")
self.weight3 = Parameter(Tensor(np.ones([64, 128]), dtype=ms.float32), name="weight3")
self.weight4 = Parameter(Tensor(np.ones([128, 64]), dtype=ms.float32), name="weight4")
self.weight5 = Parameter(Tensor(np.ones([64, 128]), dtype=ms.float32), name="weight5")
self.weight6 = Parameter(Tensor(np.ones([32, 128]), dtype=ms.float32), name="weight6")
def construct(self, x1, x6):
out = self.matmul1(x1, self.weight1)
out = self.matmul2(out, self.weight2)
out = self.matmul3(out, self.weight3)
out = self.matmul4(out, self.weight4)
out = self.matmul5(out, self.weight5)
out = out + self.weight6
out = self.matmul6(out, x6)
return out
reset_auto_parallel_context()
set_auto_parallel_context(device_num=8, global_rank=0, strategy_ckpt_save_file="./strategy_stage1.ckpt")
strategy1 = ((8, 1), (1, 1))
strategy2 = ((1, 8), (8, 1))
strategy3 = ((2, 2), (2, 2))
strategy4 = ((1, 1), (1, 8))
strategy5 = ((4, 2), (2, 1))
strategy6 = ((4, 1), (1, 2))
net = GradWrap(NetWithLoss(Net(strategy1, strategy2, strategy3, strategy4, strategy5, strategy6)))
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
net.set_auto_parallel()
x1 = Tensor(np.ones([32, 32]), dtype=ms.float32)
x6 = Tensor(np.ones([128, 32]), dtype=ms.float32)
_executor.compile(net, x1, x6)
# remove matmul2, add matmul7
def test_six_matmul_load():
class NetWithLoss(nn.Cell):
def __init__(self, network):
super(NetWithLoss, self).__init__()
self.loss = VirtualLoss()
self.network = network
def construct(self, x1, x6, x7):
predict = self.network(x1, x6, x7)
return self.loss(predict)
class GradWrap(nn.Cell):
def __init__(self, network):
super(GradWrap, self).__init__()
self.network = network
def construct(self, x1, x6, x7):
return C.grad_all(self.network)(x1, x6, x7)
class Net(nn.Cell):
def __init__(self, strategy1, strategy3, strategy4, strategy5, strategy6, strategy7):
super().__init__()
self.matmul1 = P.MatMul().set_strategy(strategy1)
self.matmul3 = P.MatMul().set_strategy(strategy3)
self.matmul4 = P.MatMul().set_strategy(strategy4)
self.matmul5 = P.MatMul().set_strategy(strategy5)
self.matmul6 = P.MatMul().set_strategy(strategy6)
self.matmul7 = P.MatMul().set_strategy(strategy7)
self.weight1 = Parameter(Tensor(np.ones([32, 64]), dtype=ms.float32), name="weight1")
self.weight3 = Parameter(Tensor(np.ones([64, 128]), dtype=ms.float32), name="weight3")
self.weight4 = Parameter(Tensor(np.ones([128, 64]), dtype=ms.float32), name="weight4")
self.weight5 = Parameter(Tensor(np.ones([64, 128]), dtype=ms.float32), name="weight5")
self.weight6 = Parameter(Tensor(np.ones([32, 128]), dtype=ms.float32), name="weight6")
def construct(self, x1, x6, x7):
out = self.matmul1(x1, self.weight1)
out = self.matmul3(out, self.weight3)
out = self.matmul4(out, self.weight4)
out = self.matmul5(out, self.weight5)
out = out + self.weight6
out = self.matmul6(out, x6)
out = self.matmul7(out, x7)
return out
reset_auto_parallel_context()
set_auto_parallel_context(device_num=8, global_rank=0, strategy_ckpt_load_file="./strategy_stage1.ckpt")
strategy1 = ((8, 1), (1, 1))
strategy3 = ((8, 1), (1, 1))
strategy4 = ((8, 1), (1, 1))
strategy5 = ((8, 1), (1, 1))
strategy6 = ((8, 1), (1, 1))
strategy7 = ((8, 1), (1, 1))
net = GradWrap(NetWithLoss(Net(strategy1, strategy3, strategy4, strategy5, strategy6, strategy7)))
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
net.set_auto_parallel()
x1 = Tensor(np.ones([32, 32]), dtype=ms.float32)
x6 = Tensor(np.ones([128, 32]), dtype=ms.float32)
x7 = Tensor(np.ones([32, 32]), dtype=ms.float32)
_executor.compile(net, x1, x6, x7)
# model_parallel test
def test_six_matmul_save_auto():
class NetWithLoss(nn.Cell):
def __init__(self, network):
super(NetWithLoss, self).__init__()
self.loss = VirtualLoss()
self.network = network
def construct(self, x1, x6):
predict = self.network(x1, x6)
return self.loss(predict)
class GradWrap(nn.Cell):
def __init__(self, network):
super(GradWrap, self).__init__()
self.network = network
def construct(self, x1, x6):
return C.grad_all(self.network)(x1, x6)
class Net(nn.Cell):
def __init__(self):
super().__init__()
self.matmul1 = P.MatMul()
self.matmul2 = P.MatMul()
self.matmul3 = P.MatMul()
self.matmul4 = P.MatMul()
self.matmul5 = P.MatMul()
self.matmul6 = P.MatMul()
self.weight1 = Parameter(Tensor(np.ones([32, 64]), dtype=ms.float32), name="weight1")
self.weight2 = Parameter(Tensor(np.ones([64, 64]), dtype=ms.float32), name="weight2")
self.weight3 = Parameter(Tensor(np.ones([64, 128]), dtype=ms.float32), name="weight3")
self.weight4 = Parameter(Tensor(np.ones([128, 64]), dtype=ms.float32), name="weight4")
self.weight5 = Parameter(Tensor(np.ones([64, 128]), dtype=ms.float32), name="weight5")
self.weight6 = Parameter(Tensor(np.ones([32, 128]), dtype=ms.float32), name="weight6")
def construct(self, x1, x6):
out = self.matmul1(x1, self.weight1)
out = self.matmul2(out, self.weight2)
out = self.matmul3(out, self.weight3)
out = self.matmul4(out, self.weight4)
out = self.matmul5(out, self.weight5)
out = out + self.weight6
out = self.matmul6(out, x6)
return out
reset_auto_parallel_context()
set_auto_parallel_context(device_num=8, global_rank=0, strategy_ckpt_save_file="./strategy_stage1_auto.ckpt")
net = GradWrap(NetWithLoss(Net()))
context.set_auto_parallel_context(parallel_mode="auto_parallel")
net.set_auto_parallel()
x1 = Tensor(np.ones([32, 32]), dtype=ms.float32)
x6 = Tensor(np.ones([128, 32]), dtype=ms.float32)
_executor.compile(net, x1, x6)
# remove matmul2, add matmul7
def test_six_matmul_load_auto():
class NetWithLoss(nn.Cell):
def __init__(self, network):
super(NetWithLoss, self).__init__()
self.loss = VirtualLoss()
self.network = network
def construct(self, x1, x6, x7):
predict = self.network(x1, x6, x7)
return self.loss(predict)
class GradWrap(nn.Cell):
def __init__(self, network):
super(GradWrap, self).__init__()
self.network = network
def construct(self, x1, x6, x7):
return C.grad_all(self.network)(x1, x6, x7)
class Net(nn.Cell):
def __init__(self, strategy1, strategy3, strategy4, strategy5):
super().__init__()
self.matmul1 = P.MatMul().set_strategy(strategy1)
self.matmul3 = P.MatMul().set_strategy(strategy3)
self.matmul4 = P.MatMul().set_strategy(strategy4)
self.matmul5 = P.MatMul().set_strategy(strategy5)
self.matmul6 = P.MatMul()
self.matmul7 = P.MatMul()
self.weight1 = Parameter(Tensor(np.ones([32, 64]), dtype=ms.float32), name="weight1")
self.weight3 = Parameter(Tensor(np.ones([64, 128]), dtype=ms.float32), name="weight3")
self.weight4 = Parameter(Tensor(np.ones([128, 64]), dtype=ms.float32), name="weight4")
self.weight5 = Parameter(Tensor(np.ones([64, 128]), dtype=ms.float32), name="weight5")
self.weight6 = Parameter(Tensor(np.ones([32, 128]), dtype=ms.float32), name="weight6")
def construct(self, x1, x6, x7):
out = self.matmul1(x1, self.weight1)
out = self.matmul3(out, self.weight3)
out = self.matmul4(out, self.weight4)
out = self.matmul5(out, self.weight5)
out = out + self.weight6
out = self.matmul6(out, x6)
out = self.matmul7(out, x7)
return out
reset_auto_parallel_context()
set_auto_parallel_context(device_num=8, global_rank=0, strategy_ckpt_load_file="./strategy_stage1_auto.ckpt")
strategy1 = ((2, 2), (2, 2))
strategy3 = ((2, 2), (2, 2))
strategy4 = ((2, 2), (2, 2))
strategy5 = ((2, 2), (2, 2))
net = GradWrap(NetWithLoss(Net(strategy1, strategy3, strategy4, strategy5)))
context.set_auto_parallel_context(parallel_mode="auto_parallel")
net.set_auto_parallel()
x1 = Tensor(np.ones([32, 32]), dtype=ms.float32)
x6 = Tensor(np.ones([128, 32]), dtype=ms.float32)
x7 = Tensor(np.ones([32, 32]), dtype=ms.float32)
_executor.compile(net, x1, x6, x7)