forked from mindspore-Ecosystem/mindspore
198 lines
6.5 KiB
Python
198 lines
6.5 KiB
Python
# Copyright 2019 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import numpy as np
|
|
from mindspore import context
|
|
import mindspore.nn as nn
|
|
from mindspore.ops import operations as P
|
|
from mindspore import Tensor
|
|
from tests.ut.python.ops.test_math_ops import VirtualLoss
|
|
import mindspore as ms
|
|
from mindspore.common.api import _executor
|
|
from mindspore.ops import composite as C
|
|
|
|
|
|
class NetWithLoss(nn.Cell):
|
|
def __init__(self, network):
|
|
super(NetWithLoss, self).__init__()
|
|
self.loss = VirtualLoss()
|
|
self.network = network
|
|
|
|
def construct(self, x, y):
|
|
predict = self.network(x, y)
|
|
return self.loss(predict)
|
|
|
|
|
|
class GradWrap(nn.Cell):
|
|
def __init__(self, network):
|
|
super(GradWrap, self).__init__()
|
|
self.network = network
|
|
|
|
def construct(self, x, y):
|
|
return C.grad_all(self.network)(x, y)
|
|
|
|
|
|
def compile(net, x, y):
|
|
net.set_auto_parallel()
|
|
_executor.compile(net, x, y)
|
|
|
|
|
|
def test_prelu_single_success1():
|
|
class Net(nn.Cell):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.prelu = P.PReLU()
|
|
|
|
def construct(self, x, y):
|
|
out = self.prelu(x, y)
|
|
return out
|
|
|
|
context.reset_auto_parallel_context()
|
|
net = GradWrap(NetWithLoss(Net()))
|
|
x = Tensor(np.random.rand(1, 33, 4, 4), ms.float32)
|
|
w = Tensor(np.random.rand(33), ms.float32)
|
|
compile(net, x, w)
|
|
|
|
|
|
def test_prelu_single_success2():
|
|
class Net(nn.Cell):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.prelu = P.PReLU()
|
|
|
|
def construct(self, x, y):
|
|
out = self.prelu(x, y)
|
|
return out
|
|
|
|
context.reset_auto_parallel_context()
|
|
net = GradWrap(NetWithLoss(Net()))
|
|
x = Tensor(np.random.rand(1, 33, 4, 4), ms.float32)
|
|
w = Tensor([0.1], ms.float32)
|
|
compile(net, x, w)
|
|
|
|
|
|
def test_prelu_parallel_success1():
|
|
class Net(nn.Cell):
|
|
def __init__(self, strategy):
|
|
super().__init__()
|
|
self.prelu = P.PReLU().set_strategy(strategy)
|
|
def construct(self, x, y):
|
|
out = self.prelu(x, y)
|
|
return out
|
|
context.reset_auto_parallel_context()
|
|
context.set_auto_parallel_context(device_num=8, global_rank=0)
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
|
strategy = ((1, 1, 1, 1), (1, ))
|
|
x = Tensor(np.random.rand(4, 4, 32, 64),dtype=ms.float32)
|
|
w = Tensor(np.random.rand(4),dtype=ms.float32)
|
|
net = GradWrap(NetWithLoss(Net(strategy)))
|
|
compile(net, x, w)
|
|
|
|
|
|
def test_prelu_parallel_success2():
|
|
class Net(nn.Cell):
|
|
def __init__(self, strategy):
|
|
super().__init__()
|
|
self.prelu = P.PReLU().set_strategy(strategy)
|
|
def construct(self, x, y):
|
|
out = self.prelu(x, y)
|
|
return out
|
|
context.reset_auto_parallel_context()
|
|
context.set_auto_parallel_context(device_num=64, global_rank=0)
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
|
strategy = ((2, 1, 4, 8), (1, ))
|
|
x = Tensor(np.random.rand(4, 4, 32, 64),dtype=ms.float32)
|
|
w = Tensor(np.random.rand(4),dtype=ms.float32)
|
|
net = GradWrap(NetWithLoss(Net(strategy)))
|
|
compile(net, x, w)
|
|
|
|
|
|
def test_prelu_parallel_success3():
|
|
class NetWithLoss(nn.Cell):
|
|
def __init__(self, network):
|
|
super(NetWithLoss, self).__init__()
|
|
self.loss = VirtualLoss()
|
|
self.network = network
|
|
|
|
def construct(self, x, y, w):
|
|
predict = self.network(x, y, w)
|
|
return self.loss(predict)
|
|
|
|
|
|
class GradWrap(nn.Cell):
|
|
def __init__(self, network):
|
|
super(GradWrap, self).__init__()
|
|
self.network = network
|
|
|
|
def construct(self, x, y, w):
|
|
return C.grad_all(self.network)(x, y, w)
|
|
|
|
class Net(nn.Cell):
|
|
def __init__(self, strategy1, strategy2):
|
|
super().__init__()
|
|
self.matmul = P.MatMul().set_strategy(strategy1)
|
|
self.prelu = P.PReLU().set_strategy(strategy2)
|
|
def construct(self, x, y, w):
|
|
out = self.matmul(x, y)
|
|
out = self.prelu(out, w)
|
|
return out
|
|
|
|
context.reset_auto_parallel_context()
|
|
context.set_auto_parallel_context(device_num=64, global_rank=0)
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
|
strategy1 = ((2, 4), (4, 2))
|
|
strategy2 = ((32, 1), (1, ))
|
|
x = Tensor(np.random.rand(128, 64),dtype=ms.float32)
|
|
y = Tensor(np.random.rand(64, 16),dtype=ms.float32)
|
|
w = Tensor(np.random.rand(16),dtype=ms.float32)
|
|
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
|
|
net.set_auto_parallel()
|
|
_executor.compile(net, x, y, w)
|
|
|
|
|
|
def test_prelu_parallel_success4():
|
|
class Net(nn.Cell):
|
|
def __init__(self, strategy):
|
|
super().__init__()
|
|
self.prelu = P.PReLU().set_strategy(strategy)
|
|
def construct(self, x, y):
|
|
out = self.prelu(x, y)
|
|
return out
|
|
context.reset_auto_parallel_context()
|
|
context.set_auto_parallel_context(device_num=64, global_rank=0)
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
|
strategy = ((2, 4, 4, 2), (4, ))
|
|
x = Tensor(np.random.rand(4, 16, 32, 64),dtype=ms.float32)
|
|
w = Tensor(np.random.rand(16),dtype=ms.float32)
|
|
net = GradWrap(NetWithLoss(Net(strategy)))
|
|
compile(net, x, w)
|
|
|
|
|
|
def test_prelu_parallel_success5():
|
|
class Net(nn.Cell):
|
|
def __init__(self, strategy):
|
|
super().__init__()
|
|
self.prelu = P.PReLU().set_strategy(strategy)
|
|
def construct(self, x, y):
|
|
out = self.prelu(x, y)
|
|
return out
|
|
context.reset_auto_parallel_context()
|
|
context.set_auto_parallel_context(device_num=64, global_rank=0)
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
|
strategy = ((2, 4, 4, 2), (1, ))
|
|
x = Tensor(np.random.rand(4, 16, 32, 64),dtype=ms.float32)
|
|
w = Tensor(np.random.rand(1),dtype=ms.float32)
|
|
net = GradWrap(NetWithLoss(Net(strategy)))
|
|
compile(net, x, w)
|