forked from mindspore-Ecosystem/mindspore
78 lines
2.1 KiB
Python
78 lines
2.1 KiB
Python
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
"""
|
|
test pooling api
|
|
"""
|
|
import numpy as np
|
|
|
|
import mindspore.nn as nn
|
|
from mindspore import Tensor
|
|
from mindspore.common.api import _executor
|
|
|
|
|
|
class AvgNet(nn.Cell):
|
|
def __init__(self,
|
|
kernel_size,
|
|
stride=None):
|
|
super(AvgNet, self).__init__()
|
|
self.avgpool = nn.AvgPool2d(kernel_size, stride)
|
|
|
|
def construct(self, x):
|
|
return self.avgpool(x)
|
|
|
|
|
|
def test_compile_avg():
|
|
net = AvgNet(3, 1)
|
|
x = Tensor(np.ones([1, 3, 16, 50]).astype(np.float32))
|
|
_executor.compile(net, x)
|
|
|
|
|
|
class MaxNet(nn.Cell):
|
|
""" MaxNet definition """
|
|
|
|
def __init__(self,
|
|
kernel_size,
|
|
stride=None,
|
|
padding=0):
|
|
super(MaxNet, self).__init__()
|
|
self.maxpool = nn.MaxPool2d(kernel_size,
|
|
stride)
|
|
|
|
def construct(self, x):
|
|
return self.maxpool(x)
|
|
|
|
|
|
def test_compile_max():
|
|
net = MaxNet(3, stride=1, padding=0)
|
|
x = Tensor(np.random.randint(0, 255, [1, 3, 6, 6]).astype(np.float32))
|
|
_executor.compile(net, x)
|
|
|
|
|
|
class Avg1dNet(nn.Cell):
|
|
def __init__(self,
|
|
kernel_size,
|
|
stride=None):
|
|
super(Avg1dNet, self).__init__()
|
|
self.avg1d = nn.AvgPool1d(kernel_size, stride)
|
|
|
|
def construct(self, x):
|
|
return self.avg1d(x)
|
|
|
|
|
|
def test_avg1d():
|
|
net = Avg1dNet(6, 1)
|
|
input = Tensor(np.random.randint(0, 255, [1, 3, 6]).astype(np.float32))
|
|
_executor.compile(net, input)
|