mindspore/tests/ut/python/parallel/test_hybird_parallel_activa...

247 lines
9.1 KiB
Python

# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import mindspore as ms
import mindspore.nn as nn
from mindspore import Tensor
from mindspore import context
from mindspore.common.api import _executor
from mindspore.ops import composite as C
from mindspore.ops import operations as P
from tests.ut.python.ops.test_math_ops import VirtualLoss
class NetWithLoss(nn.Cell):
def __init__(self, network):
super(NetWithLoss, self).__init__()
self.loss = VirtualLoss()
self.network = network
def construct(self, x, y, b):
predict = self.network(x, y, b)
return self.loss(predict)
class GradWrap(nn.Cell):
def __init__(self, network):
super(GradWrap, self).__init__()
self.network = network
def construct(self, x, y, b):
return C.grad_all(self.network)(x, y, b)
def compile_net(net, x, y, b):
net.set_auto_parallel()
_executor.compile(net, x, y, b)
def test_matmul_tanh():
class Net(nn.Cell):
def __init__(self, strategy1, strategy2, strategy3):
super().__init__()
self.matmul1 = P.MatMul().set_strategy(strategy1)
self.matmul2 = P.MatMul().set_strategy(strategy2)
self.tanh = P.Tanh().set_strategy(strategy3)
def construct(self, x, y, b):
out = self.tanh(self.matmul1(x, y))
out = self.matmul2(out, b)
return out
strategy1 = ((16, 1), (1, 1))
strategy2 = ((1, 1), (1, 16))
strategy3 = ((4, 4),)
net = GradWrap(NetWithLoss(Net(strategy1, strategy2, strategy3)))
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
context.set_auto_parallel_context(device_num=16, global_rank=0)
x = Tensor(np.ones([128, 32]), dtype=ms.float32)
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
b = Tensor(np.ones([64, 64]), dtype=ms.float32)
compile_net(net, x, y, b)
def test_matmul_activation():
class Net(nn.Cell):
def __init__(self, strategy1, strategy2, strategy3):
super().__init__()
self.matmul1 = P.MatMul().set_strategy(strategy1)
self.matmul2 = P.MatMul().set_strategy(strategy2)
self.activation = P.ReLU().set_strategy(strategy3)
def construct(self, x, y, b):
out = self.activation(self.matmul1(x, y))
out = self.matmul2(out, b)
return out
strategy1 = ((16, 1), (1, 1))
strategy2 = ((1, 1), (1, 16))
strategy3 = ((4, 4),)
net = GradWrap(NetWithLoss(Net(strategy1, strategy2, strategy3)))
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
context.set_auto_parallel_context(device_num=16, global_rank=0)
x = Tensor(np.ones([128, 32]), dtype=ms.float32)
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
b = Tensor(np.ones([64, 64]), dtype=ms.float32)
compile_net(net, x, y, b)
def test_matmul_softmax():
class Net(nn.Cell):
def __init__(self, strategy1, strategy2, strategy3):
super().__init__()
self.matmul1 = P.MatMul().set_strategy(strategy1)
self.matmul2 = P.MatMul().set_strategy(strategy2)
self.softmax = P.Softmax().set_strategy(strategy3)
def construct(self, x, y, b):
out = self.softmax(self.matmul1(x, y))
out = self.matmul2(out, b)
return out
strategy1 = ((16, 1), (1, 1))
strategy2 = ((1, 1), (1, 16))
strategy3 = ((16, 1),)
net = GradWrap(NetWithLoss(Net(strategy1, strategy2, strategy3)))
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
context.set_auto_parallel_context(device_num=16, global_rank=0)
x = Tensor(np.ones([128, 32]), dtype=ms.float32)
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
b = Tensor(np.ones([64, 64]), dtype=ms.float32)
compile_net(net, x, y, b)
def test_matmul_logsoftmax():
class Net(nn.Cell):
def __init__(self, strategy1, strategy2, strategy3):
super().__init__()
self.matmul1 = P.MatMul().set_strategy(strategy1)
self.matmul2 = P.MatMul().set_strategy(strategy2)
self.logsoftmax = P.LogSoftmax().set_strategy(strategy3)
def construct(self, x, y, b):
out = self.logsoftmax(self.matmul1(x, y))
out = self.matmul2(out, b)
return out
strategy1 = ((4, 2), (2, 2))
strategy2 = ((2, 4), (4, 2))
strategy3 = ((16, 1),)
net = GradWrap(NetWithLoss(Net(strategy1, strategy2, strategy3)))
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
context.set_auto_parallel_context(device_num=16, global_rank=0)
x = Tensor(np.ones([128, 32]), dtype=ms.float32)
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
b = Tensor(np.ones([64, 64]), dtype=ms.float32)
compile_net(net, x, y, b)
def test_activations():
class Net(nn.Cell):
def __init__(self, strategy1, strategy2, strategy3):
super().__init__()
self.matmul1 = P.MatMul().set_strategy(strategy1)
self.matmul2 = P.MatMul().set_strategy(strategy2)
self.gelu = P.Gelu().set_strategy(strategy3)
self.tanh = P.Tanh().set_strategy(strategy3)
self.softmax = P.Softmax().set_strategy(strategy3)
self.logsoftmax = P.LogSoftmax().set_strategy(strategy3)
def construct(self, x, y, b):
out = self.gelu(self.tanh(self.matmul1(x, y)))
out = self.logsoftmax(self.softmax(self.matmul2(out, b)))
return out
strategy1 = ((1, 2), (2, 2))
strategy2 = ((2, 2), (2, 1))
strategy3 = ((4, 1),)
net = GradWrap(NetWithLoss(Net(strategy1, strategy2, strategy3)))
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
context.set_auto_parallel_context(device_num=4, global_rank=0)
x = Tensor(np.ones([128, 32]), dtype=ms.float32)
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
b = Tensor(np.ones([64, 64]), dtype=ms.float32)
compile_net(net, x, y, b)
def test_activations_repeated_calculation():
class Net(nn.Cell):
def __init__(self, strategy1, strategy2, strategy3, strategy4, strategy5, strategy6):
super().__init__()
self.matmul1 = P.MatMul().set_strategy(strategy1)
self.matmul2 = P.MatMul().set_strategy(strategy2)
self.gelu = P.Gelu().set_strategy(strategy3)
self.tanh = P.Tanh().set_strategy(strategy4)
self.softmax = P.Softmax().set_strategy(strategy5)
self.logsoftmax = P.LogSoftmax().set_strategy(strategy6)
def construct(self, x, y, b):
out = self.gelu(self.tanh(self.matmul1(x, y)))
out = self.logsoftmax(self.softmax(self.matmul2(out, b)))
return out
strategy1 = ((2, 4), (4, 8))
strategy2 = ((2, 2), (2, 1))
strategy3 = ((2, 1),)
strategy4 = ((2, 2),)
strategy5 = ((4, 1),)
strategy6 = ((8, 1),)
net = GradWrap(NetWithLoss(Net(strategy1, strategy2, strategy3, strategy4, strategy5, strategy6)))
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
context.set_auto_parallel_context(device_num=64, global_rank=0)
x = Tensor(np.ones([128, 32]), dtype=ms.float32)
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
b = Tensor(np.ones([64, 64]), dtype=ms.float32)
compile_net(net, x, y, b)
def test_activations_axis_tuple():
class Net(nn.Cell):
def __init__(self, strategy1, strategy2, strategy3, strategy4, strategy5, strategy6):
super().__init__()
self.matmul1 = P.MatMul().set_strategy(strategy1)
self.matmul2 = P.MatMul().set_strategy(strategy2)
self.gelu = P.Gelu().set_strategy(strategy3)
self.tanh = P.Tanh().set_strategy(strategy4)
self.softmax = P.Softmax(axis=(0, 1)).set_strategy(strategy5)
self.logsoftmax = P.LogSoftmax().set_strategy(strategy6)
def construct(self, x, y, b):
out = self.gelu(self.tanh(self.matmul1(x, y)))
out = self.logsoftmax(self.softmax(self.matmul2(out, b)))
return out
strategy1 = ((2, 4), (4, 8))
strategy2 = ((2, 2), (2, 1))
strategy3 = ((2, 1),)
strategy4 = ((2, 2),)
strategy5 = ((1, 1),)
strategy6 = ((8, 1),)
net = GradWrap(NetWithLoss(Net(strategy1, strategy2, strategy3, strategy4, strategy5, strategy6)))
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
context.set_auto_parallel_context(device_num=64, global_rank=0)
x = Tensor(np.ones([128, 32]), dtype=ms.float32)
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
b = Tensor(np.ones([64, 64]), dtype=ms.float32)
compile_net(net, x, y, b)