mindspore/tests/ut/python/parallel/test_auto_parallel_arithmet...

161 lines
5.4 KiB
Python

# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import mindspore as ms
import mindspore.nn as nn
from mindspore import Tensor
from mindspore import context
from mindspore.common.api import _executor
from mindspore.ops import composite as C
from mindspore.ops import operations as P
from mindspore.parallel._utils import _reset_op_id as reset_op_id
from tests.ut.python.ops.test_math_ops import VirtualLoss
context.set_context(mode=context.GRAPH_MODE)
class NetWithLoss(nn.Cell):
def __init__(self, network):
super(NetWithLoss, self).__init__()
self.loss = VirtualLoss()
self.network = network
def construct(self, x, y, b):
predict = self.network(x, y, b)
return self.loss(predict)
class GradWrap(nn.Cell):
def __init__(self, network):
super(GradWrap, self).__init__()
self.network = network
def construct(self, x, y, b):
return C.grad_all(self.network)(x, y, b)
def compile_net(net, x, y, b, phase):
net.set_auto_parallel()
_executor.compile(net, x, y, b, phase=phase)
def test_auto_parallel_arithmetic():
class Net(nn.Cell):
def __init__(self):
super().__init__()
self.matmul = P.MatMul()
self.floordiv = P.FloorDiv()
def construct(self, x, y, b):
out = self.matmul(x, y)
out = self.floordiv(out, b)
return out
context.set_auto_parallel_context(device_num=8, global_rank=0)
net = NetWithLoss(Net())
context.set_auto_parallel_context(parallel_mode="auto_parallel")
reset_op_id()
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
y = Tensor(np.ones([32, 128]), dtype=ms.float32)
b = Tensor(np.ones([64, 128]), dtype=ms.float32)
compile_net(net, x, y, b, phase='train')
strategies = _executor._get_strategy(net)
expected_strategies = {'Default/network-Net/FloorDiv-op0': [[2, 4], [2, 4]],
'Default/network-Net/MatMul-op1': [[2, 1], [1, 4]]}
assert strategies == expected_strategies
def test_auto_parallel_arithmetic_broadcast_both():
class Net(nn.Cell):
def __init__(self):
super().__init__()
self.matmul = P.MatMul()
self.floordiv = P.FloorDiv()
def construct(self, x, y, b):
out = self.matmul(x, y)
out = self.floordiv(out, b)
return out
context.set_auto_parallel_context(device_num=8, global_rank=0)
net = NetWithLoss(Net())
context.set_auto_parallel_context(parallel_mode="auto_parallel")
reset_op_id()
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
y = Tensor(np.ones([32, 1]), dtype=ms.float32)
b = Tensor(np.ones([1, 64]), dtype=ms.float32)
compile_net(net, x, y, b, phase='train')
strategies = _executor._get_strategy(net)
expected_strategies = {'Default/network-Net/FloorDiv-op0': [[8, 1], [1, 1]],
'Default/network-Net/MatMul-op1': [[8, 1], [1, 1]]}
assert strategies == expected_strategies
def test_auto_parallel_arithmetic_broadcast_right():
class Net(nn.Cell):
def __init__(self):
super().__init__()
self.matmul = P.MatMul()
self.floordiv = P.FloorDiv()
def construct(self, x, y, b):
out = self.matmul(x, y)
out = self.floordiv(out, b)
return out
context.set_auto_parallel_context(device_num=8, global_rank=0)
net = NetWithLoss(Net())
context.set_auto_parallel_context(parallel_mode="auto_parallel")
reset_op_id()
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
y = Tensor(np.ones([32, 32]), dtype=ms.float32)
b = Tensor(np.ones([32]), dtype=ms.float32)
compile_net(net, x, y, b, phase='train')
strategies = _executor._get_strategy(net)
expected_strategies = {'Default/network-Net/FloorDiv-op0': [[4, 2], [2]],
'Default/network-Net/MatMul-op1': [[4, 1], [1, 2]]}
assert strategies == expected_strategies
def test_auto_parallel_arithmetic_broadcast_left():
class Net(nn.Cell):
def __init__(self):
super().__init__()
self.matmul = P.MatMul()
self.floordiv = P.FloorDiv()
def construct(self, x, y, b):
out = self.matmul(x, y)
out = self.floordiv(out, b)
return out
context.set_auto_parallel_context(device_num=8, global_rank=0)
net = NetWithLoss(Net())
context.set_auto_parallel_context(parallel_mode="auto_parallel")
reset_op_id()
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
y = Tensor(np.ones([32, 32]), dtype=ms.float32)
b = Tensor(np.ones([128, 64, 32]), dtype=ms.float32)
compile_net(net, x, y, b, phase="train")
strategies = _executor._get_strategy(net)
expected_strategies = {'Default/network-Net/FloorDiv-op0': [[4, 2], [1, 4, 2]],
'Default/network-Net/MatMul-op1': [[4, 1], [1, 2]]}
assert strategies == expected_strategies