forked from mindspore-Ecosystem/mindspore
490 lines
19 KiB
C++
490 lines
19 KiB
C++
/**
|
|
* Copyright 2019 Huawei Technologies Co., Ltd
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
#include <fstream>
|
|
#include <iostream>
|
|
#include <memory>
|
|
#include <string>
|
|
#include "common/common.h"
|
|
#include "common/utils.h"
|
|
#include "dataset/core/client.h"
|
|
#include "dataset/core/global_context.h"
|
|
#include "dataset/engine/datasetops/source/image_folder_op.h"
|
|
#include "dataset/engine/datasetops/source/sampler/distributed_sampler.h"
|
|
#include "dataset/engine/datasetops/source/sampler/pk_sampler.h"
|
|
#include "dataset/engine/datasetops/source/sampler/random_sampler.h"
|
|
#include "dataset/engine/datasetops/source/sampler/sampler.h"
|
|
#include "dataset/engine/datasetops/source/sampler/sequential_sampler.h"
|
|
#include "dataset/engine/datasetops/source/sampler/subset_random_sampler.h"
|
|
#include "dataset/engine/datasetops/source/sampler/weighted_random_sampler.h"
|
|
#include "dataset/util/de_error.h"
|
|
#include "dataset/util/path.h"
|
|
#include "dataset/util/status.h"
|
|
#include "gtest/gtest.h"
|
|
#include "utils/log_adapter.h"
|
|
#include "securec.h"
|
|
|
|
namespace common = mindspore::common;
|
|
|
|
using namespace mindspore::dataset;
|
|
using mindspore::MsLogLevel::ERROR;
|
|
using mindspore::ExceptionType::NoExceptionType;
|
|
using mindspore::LogStream;
|
|
|
|
std::shared_ptr<BatchOp> Batch(int batch_size = 1, bool drop = false, int rows_per_buf = 2);
|
|
|
|
std::shared_ptr<RepeatOp> Repeat(int repeat_cnt);
|
|
|
|
std::shared_ptr<ExecutionTree> Build(std::vector<std::shared_ptr<DatasetOp>> ops);
|
|
|
|
std::shared_ptr<ImageFolderOp> ImageFolder(int64_t num_works, int64_t rows, int64_t conns, std::string path,
|
|
bool shuf = false, std::unique_ptr<Sampler> sampler = nullptr,
|
|
std::map<std::string, int32_t> map = {}, int64_t num_samples = 0,
|
|
bool decode = false) {
|
|
std::shared_ptr<ImageFolderOp> so;
|
|
ImageFolderOp::Builder builder;
|
|
Status rc = builder.SetNumWorkers(num_works)
|
|
.SetImageFolderDir(path)
|
|
.SetRowsPerBuffer(rows)
|
|
.SetOpConnectorSize(conns)
|
|
.SetExtensions({".jpg", ".JPEG"})
|
|
.SetSampler(std::move(sampler))
|
|
.SetClassIndex(map)
|
|
.SetDecode(decode)
|
|
.SetNumSamples(num_samples)
|
|
.Build(&so);
|
|
return so;
|
|
}
|
|
|
|
Status Create1DTensor(std::shared_ptr<Tensor> *sample_ids, int64_t num_elements, unsigned char *data = nullptr,
|
|
DataType::Type data_type = DataType::DE_UINT32) {
|
|
TensorShape shape(std::vector<int64_t>(1, num_elements));
|
|
RETURN_IF_NOT_OK(
|
|
Tensor::CreateTensor(sample_ids, TensorImpl::kFlexible, shape, DataType(data_type), data));
|
|
if (data == nullptr) {
|
|
(*sample_ids)->GetMutableBuffer(); // allocate memory in case user forgets!
|
|
}
|
|
return Status::OK();
|
|
}
|
|
|
|
class MindDataTestImageFolderSampler : public UT::DatasetOpTesting {
|
|
protected:
|
|
};
|
|
|
|
TEST_F(MindDataTestImageFolderSampler, TestSequentialImageFolderWithRepeat) {
|
|
std::string folder_path = datasets_root_path_ + "/testPK/data";
|
|
auto tree = Build({ImageFolder(16, 2, 32, folder_path, false), Repeat(2)});
|
|
tree->Prepare();
|
|
int32_t res[] = {0, 1, 2, 3};
|
|
Status rc = tree->Launch();
|
|
if (rc.IsError()) {
|
|
MS_LOG(ERROR) << "Return code error detected during tree launch: " << common::SafeCStr(rc.ToString()) << ".";
|
|
EXPECT_TRUE(false);
|
|
} else {
|
|
DatasetIterator di(tree);
|
|
TensorMap tensor_map;
|
|
di.GetNextAsMap(&tensor_map);
|
|
EXPECT_TRUE(rc.IsOk());
|
|
uint64_t i = 0;
|
|
int32_t label = 0;
|
|
while (tensor_map.size() != 0) {
|
|
tensor_map["label"]->GetItemAt<int32_t>(&label, {});
|
|
EXPECT_TRUE(res[(i % 44) / 11] == label);
|
|
MS_LOG(DEBUG) << "row: " << i << "\t" << tensor_map["image"]->shape() << "label:" << label << "\n";
|
|
i++;
|
|
di.GetNextAsMap(&tensor_map);
|
|
}
|
|
EXPECT_TRUE(i == 88);
|
|
}
|
|
}
|
|
|
|
TEST_F(MindDataTestImageFolderSampler, TestRandomImageFolder) {
|
|
std::string folder_path = datasets_root_path_ + "/testPK/data";
|
|
auto tree = Build({ImageFolder(16, 2, 32, folder_path, true, nullptr)});
|
|
tree->Prepare();
|
|
Status rc = tree->Launch();
|
|
if (rc.IsError()) {
|
|
MS_LOG(ERROR) << "Return code error detected during tree launch: " << common::SafeCStr(rc.ToString()) << ".";
|
|
EXPECT_TRUE(false);
|
|
} else {
|
|
DatasetIterator di(tree);
|
|
TensorMap tensor_map;
|
|
di.GetNextAsMap(&tensor_map);
|
|
EXPECT_TRUE(rc.IsOk());
|
|
uint64_t i = 0;
|
|
int32_t label = 0;
|
|
while (tensor_map.size() != 0) {
|
|
tensor_map["label"]->GetItemAt<int32_t>(&label, {});
|
|
MS_LOG(DEBUG) << "row: " << i << "\t" << tensor_map["image"]->shape() << "label:" << label << "\n";
|
|
i++;
|
|
di.GetNextAsMap(&tensor_map);
|
|
}
|
|
EXPECT_TRUE(i == 44);
|
|
}
|
|
}
|
|
|
|
TEST_F(MindDataTestImageFolderSampler, TestRandomSamplerImageFolder) {
|
|
int32_t original_seed = GlobalContext::config_manager()->seed();
|
|
GlobalContext::config_manager()->set_seed(0);
|
|
std::unique_ptr<Sampler> sampler = std::make_unique<RandomSampler>(true, true, 12);
|
|
int32_t res[] = {2, 2, 2, 3, 2, 3, 2, 3, 1, 2, 2, 1}; // ground truth label
|
|
std::string folder_path = datasets_root_path_ + "/testPK/data";
|
|
auto tree = Build({ImageFolder(16, 2, 32, folder_path, false, std::move(sampler))});
|
|
tree->Prepare();
|
|
Status rc = tree->Launch();
|
|
if (rc.IsError()) {
|
|
MS_LOG(ERROR) << "Return code error detected during tree launch: " << common::SafeCStr(rc.ToString()) << ".";
|
|
EXPECT_TRUE(false);
|
|
} else {
|
|
DatasetIterator di(tree);
|
|
TensorMap tensor_map;
|
|
di.GetNextAsMap(&tensor_map);
|
|
EXPECT_TRUE(rc.IsOk());
|
|
uint64_t i = 0;
|
|
int32_t label = 0;
|
|
while (tensor_map.size() != 0) {
|
|
tensor_map["label"]->GetItemAt<int32_t>(&label, {});
|
|
EXPECT_TRUE(res[i] == label);
|
|
MS_LOG(DEBUG) << "row: " << i << "\t" << tensor_map["image"]->shape() << "label:" << label << "\n";
|
|
i++;
|
|
di.GetNextAsMap(&tensor_map);
|
|
}
|
|
EXPECT_TRUE(i == 12);
|
|
}
|
|
GlobalContext::config_manager()->set_seed(original_seed);
|
|
}
|
|
|
|
TEST_F(MindDataTestImageFolderSampler, TestSequentialImageFolderWithRepeatBatch) {
|
|
std::string folder_path = datasets_root_path_ + "/testPK/data";
|
|
auto tree = Build({ImageFolder(16, 2, 32, folder_path, false), Repeat(2), Batch(11)});
|
|
tree->Prepare();
|
|
int32_t res[4][11] = {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
|
|
{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
|
|
{2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2},
|
|
{3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3}};
|
|
Status rc = tree->Launch();
|
|
if (rc.IsError()) {
|
|
MS_LOG(ERROR) << "Return code error detected during tree launch: " << common::SafeCStr(rc.ToString()) << ".";
|
|
EXPECT_TRUE(false);
|
|
} else {
|
|
DatasetIterator di(tree);
|
|
TensorMap tensor_map;
|
|
di.GetNextAsMap(&tensor_map);
|
|
EXPECT_TRUE(rc.IsOk());
|
|
uint64_t i = 0;
|
|
while (tensor_map.size() != 0) {
|
|
std::shared_ptr<Tensor> label;
|
|
Create1DTensor(&label, 11, reinterpret_cast<unsigned char *>(res[i % 4]), DataType::DE_INT32);
|
|
EXPECT_TRUE((*label) == (*tensor_map["label"]));
|
|
MS_LOG(DEBUG) << "row: " << i << " " << tensor_map["image"]->shape() << " (*label):" << (*label)
|
|
<< " *tensor_map[label]: " << *tensor_map["label"] << std::endl;
|
|
i++;
|
|
di.GetNextAsMap(&tensor_map);
|
|
}
|
|
EXPECT_TRUE(i == 8);
|
|
}
|
|
}
|
|
|
|
TEST_F(MindDataTestImageFolderSampler, TestSubsetRandomSamplerImageFolder) {
|
|
// id range 0 - 10 is label 0, and id range 11 - 21 is label 1
|
|
std::vector<int64_t> indices({0, 1, 2, 3, 4, 5, 12, 13, 14, 15, 16, 11});
|
|
std::unique_ptr<Sampler> sampler = std::make_unique<SubsetRandomSampler>(indices);
|
|
std::string folder_path = datasets_root_path_ + "/testPK/data";
|
|
// Expect 6 samples for label 0 and 1
|
|
int res[2] = {6, 6};
|
|
auto tree = Build({ImageFolder(16, 2, 32, folder_path, false, std::move(sampler))});
|
|
tree->Prepare();
|
|
Status rc = tree->Launch();
|
|
if (rc.IsError()) {
|
|
MS_LOG(ERROR) << "Return code error detected during tree launch: " << common::SafeCStr(rc.ToString()) << ".";
|
|
EXPECT_TRUE(false);
|
|
} else {
|
|
DatasetIterator di(tree);
|
|
TensorMap tensor_map;
|
|
rc = di.GetNextAsMap(&tensor_map);
|
|
EXPECT_TRUE(rc.IsOk());
|
|
uint64_t i = 0;
|
|
int32_t label = 0;
|
|
while (tensor_map.size() != 0) {
|
|
tensor_map["label"]->GetItemAt<int32_t>(&label, {});
|
|
res[label]--;
|
|
i++;
|
|
di.GetNextAsMap(&tensor_map);
|
|
}
|
|
EXPECT_EQ(res[0], 0);
|
|
EXPECT_EQ(res[1], 0);
|
|
EXPECT_TRUE(i == 12);
|
|
}
|
|
}
|
|
|
|
TEST_F(MindDataTestImageFolderSampler, TestWeightedRandomSamplerImageFolder) {
|
|
// num samples to draw.
|
|
int64_t num_samples = 12;
|
|
int64_t total_samples = 44;
|
|
int64_t samples_per_buffer = 10;
|
|
std::vector<double> weights(total_samples, std::rand() % 100);
|
|
|
|
// create sampler with replacement = replacement
|
|
std::unique_ptr<Sampler> sampler =
|
|
std::make_unique<WeightedRandomSampler>(weights, num_samples, true, samples_per_buffer);
|
|
|
|
std::string folder_path = datasets_root_path_ + "/testPK/data";
|
|
auto tree = Build({ImageFolder(16, 2, 32, folder_path, false, std::move(sampler))});
|
|
tree->Prepare();
|
|
Status rc = tree->Launch();
|
|
if (rc.IsError()) {
|
|
MS_LOG(ERROR) << "Return code error detected during tree launch: " << common::SafeCStr(rc.ToString()) << ".";
|
|
EXPECT_TRUE(false);
|
|
} else {
|
|
DatasetIterator di(tree);
|
|
TensorMap tensor_map;
|
|
rc = di.GetNextAsMap(&tensor_map);
|
|
EXPECT_TRUE(rc.IsOk());
|
|
uint64_t i = 0;
|
|
int32_t label = 0;
|
|
while (tensor_map.size() != 0) {
|
|
tensor_map["label"]->GetItemAt<int32_t>(&label, {});
|
|
i++;
|
|
di.GetNextAsMap(&tensor_map);
|
|
}
|
|
EXPECT_TRUE(i == 12);
|
|
}
|
|
}
|
|
|
|
TEST_F(MindDataTestImageFolderSampler, TestImageFolderClassIndex) {
|
|
std::string folder_path = datasets_root_path_ + "/testPK/data";
|
|
std::map<std::string, int32_t> map;
|
|
map["class3"] = 333;
|
|
map["class1"] = 111;
|
|
map["wrong folder name"] = 1234; // this is skipped
|
|
auto tree = Build({ImageFolder(16, 2, 32, folder_path, false, nullptr, map)});
|
|
int64_t res[2] = {111, 333};
|
|
tree->Prepare();
|
|
Status rc = tree->Launch();
|
|
if (rc.IsError()) {
|
|
MS_LOG(ERROR) << "Return code error detected during tree launch: " << common::SafeCStr(rc.ToString()) << ".";
|
|
EXPECT_TRUE(false);
|
|
} else {
|
|
DatasetIterator di(tree);
|
|
TensorMap tensor_map;
|
|
di.GetNextAsMap(&tensor_map);
|
|
EXPECT_TRUE(rc.IsOk());
|
|
uint64_t i = 0;
|
|
int32_t label = 0;
|
|
while (tensor_map.size() != 0) {
|
|
tensor_map["label"]->GetItemAt<int32_t>(&label, {});
|
|
EXPECT_TRUE(label == res[i / 11]);
|
|
MS_LOG(DEBUG) << "row: " << i << "\t" << tensor_map["image"]->shape() << "label:" << label << "\n";
|
|
i++;
|
|
di.GetNextAsMap(&tensor_map);
|
|
}
|
|
EXPECT_TRUE(i == 22);
|
|
}
|
|
}
|
|
|
|
TEST_F(MindDataTestImageFolderSampler, TestDistributedSampler) {
|
|
std::unique_ptr<Sampler> sampler = std::make_unique<DistributedSampler>(11, 10, false);
|
|
std::string folder_path = datasets_root_path_ + "/testPK/data";
|
|
auto tree = Build({ImageFolder(16, 2, 32, folder_path, false, std::move(sampler)), Repeat(4)});
|
|
tree->Prepare();
|
|
Status rc = tree->Launch();
|
|
if (rc.IsError()) {
|
|
MS_LOG(ERROR) << "Return code error detected during tree launch: " << common::SafeCStr(rc.ToString()) << ".";
|
|
EXPECT_TRUE(false);
|
|
} else {
|
|
DatasetIterator di(tree);
|
|
TensorMap tensor_map;
|
|
rc = di.GetNextAsMap(&tensor_map);
|
|
EXPECT_TRUE(rc.IsOk());
|
|
uint64_t i = 0;
|
|
int32_t label = 0;
|
|
while (tensor_map.size() != 0) {
|
|
tensor_map["label"]->GetItemAt<int32_t>(&label, {});
|
|
EXPECT_EQ(i % 4, label);
|
|
MS_LOG(DEBUG) << "row:" << i << "\tlabel:" << label << "\n";
|
|
i++;
|
|
di.GetNextAsMap(&tensor_map);
|
|
}
|
|
EXPECT_TRUE(i == 16);
|
|
}
|
|
}
|
|
|
|
TEST_F(MindDataTestImageFolderSampler, TestPKSamplerImageFolder) {
|
|
std::unique_ptr<Sampler> sampler = std::make_unique<PKSampler>(3, false, 4);
|
|
int32_t res[] = {0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3}; // ground truth label
|
|
std::string folder_path = datasets_root_path_ + "/testPK/data";
|
|
auto tree = Build({ImageFolder(16, 2, 32, folder_path, false, std::move(sampler))});
|
|
tree->Prepare();
|
|
Status rc = tree->Launch();
|
|
if (rc.IsError()) {
|
|
MS_LOG(ERROR) << "Return code error detected during tree launch: " << common::SafeCStr(rc.ToString()) << ".";
|
|
EXPECT_TRUE(false);
|
|
} else {
|
|
DatasetIterator di(tree);
|
|
TensorMap tensor_map;
|
|
di.GetNextAsMap(&tensor_map);
|
|
EXPECT_TRUE(rc.IsOk());
|
|
uint64_t i = 0;
|
|
int32_t label = 0;
|
|
while (tensor_map.size() != 0) {
|
|
tensor_map["label"]->GetItemAt<int32_t>(&label, {});
|
|
EXPECT_TRUE(res[i] == label);
|
|
MS_LOG(DEBUG) << "row: " << i << "\t" << tensor_map["image"]->shape() << "label:" << label << "\n";
|
|
i++;
|
|
di.GetNextAsMap(&tensor_map);
|
|
}
|
|
EXPECT_TRUE(i == 12);
|
|
}
|
|
}
|
|
|
|
TEST_F(MindDataTestImageFolderSampler, TestImageFolderNumSamples) {
|
|
std::string folder_path = datasets_root_path_ + "/testPK/data";
|
|
auto tree = Build({ImageFolder(16, 2, 32, folder_path, false, nullptr, {}, 11), Repeat(2)});
|
|
tree->Prepare();
|
|
Status rc = tree->Launch();
|
|
if (rc.IsError()) {
|
|
MS_LOG(ERROR) << "Return code error detected during tree launch: " << common::SafeCStr(rc.ToString()) << ".";
|
|
EXPECT_TRUE(false);
|
|
} else {
|
|
DatasetIterator di(tree);
|
|
TensorMap tensor_map;
|
|
di.GetNextAsMap(&tensor_map);
|
|
EXPECT_TRUE(rc.IsOk());
|
|
uint64_t i = 0;
|
|
int32_t label = 0;
|
|
while (tensor_map.size() != 0) {
|
|
tensor_map["label"]->GetItemAt<int32_t>(&label, {});
|
|
EXPECT_TRUE(0 == label);
|
|
MS_LOG(DEBUG) << "row: " << i << "\t" << tensor_map["image"]->shape() << "label:" << label << "\n";
|
|
i++;
|
|
di.GetNextAsMap(&tensor_map);
|
|
}
|
|
EXPECT_TRUE(i == 22);
|
|
}
|
|
}
|
|
|
|
TEST_F(MindDataTestImageFolderSampler, TestImageFolderDecode) {
|
|
std::string folder_path = datasets_root_path_ + "/testPK/data";
|
|
std::map<std::string, int32_t> map;
|
|
map["class3"] = 333;
|
|
map["class1"] = 111;
|
|
map["wrong folder name"] = 1234; // this is skipped
|
|
auto tree = Build({ImageFolder(16, 2, 32, folder_path, false, nullptr, map, 20, true)});
|
|
int64_t res[2] = {111, 333};
|
|
tree->Prepare();
|
|
Status rc = tree->Launch();
|
|
if (rc.IsError()) {
|
|
MS_LOG(ERROR) << "Return code error detected during tree launch: " << common::SafeCStr(rc.ToString()) << ".";
|
|
EXPECT_TRUE(false);
|
|
} else {
|
|
DatasetIterator di(tree);
|
|
TensorMap tensor_map;
|
|
di.GetNextAsMap(&tensor_map);
|
|
EXPECT_TRUE(rc.IsOk());
|
|
uint64_t i = 0;
|
|
int32_t label = 0;
|
|
while (tensor_map.size() != 0) {
|
|
tensor_map["label"]->GetItemAt<int32_t>(&label, {});
|
|
EXPECT_TRUE(label == res[i / 11]);
|
|
EXPECT_TRUE(
|
|
tensor_map["image"]->shape() == TensorShape({2268, 4032, 3})); // verify shapes are correct after decode
|
|
MS_LOG(DEBUG) << "row: " << i << "\t" << tensor_map["image"]->shape() << "label:" << label << "\n";
|
|
i++;
|
|
di.GetNextAsMap(&tensor_map);
|
|
}
|
|
EXPECT_TRUE(i == 20);
|
|
}
|
|
}
|
|
|
|
TEST_F(MindDataTestImageFolderSampler, TestImageFolderDatasetSize) {
|
|
std::string folder_path = datasets_root_path_ + "/testPK/data";
|
|
int64_t num_rows = 0;
|
|
int64_t num_classes = 0;
|
|
ImageFolderOp::CountRowsAndClasses(folder_path, 15, {}, &num_rows, &num_classes);
|
|
EXPECT_TRUE(num_rows == 15 && num_classes == 4);
|
|
ImageFolderOp::CountRowsAndClasses(folder_path, 44, {}, &num_rows, &num_classes);
|
|
EXPECT_TRUE(num_rows == 44 && num_classes == 4);
|
|
ImageFolderOp::CountRowsAndClasses(folder_path, 0, {}, &num_rows, &num_classes);
|
|
EXPECT_TRUE(num_rows == 44 && num_classes == 4);
|
|
ImageFolderOp::CountRowsAndClasses(folder_path, 55, {}, &num_rows, &num_classes);
|
|
EXPECT_TRUE(num_rows == 44 && num_classes == 4);
|
|
ImageFolderOp::CountRowsAndClasses(folder_path, 44, {}, &num_rows, &num_classes, 2, 3);
|
|
EXPECT_TRUE(num_rows == 15 && num_classes == 4);
|
|
ImageFolderOp::CountRowsAndClasses(folder_path, 33, {}, &num_rows, &num_classes, 0, 3);
|
|
EXPECT_TRUE(num_rows == 15 && num_classes == 4);
|
|
ImageFolderOp::CountRowsAndClasses(folder_path, 13, {}, &num_rows, &num_classes, 0, 11);
|
|
EXPECT_TRUE(num_rows == 4 && num_classes == 4);
|
|
ImageFolderOp::CountRowsAndClasses(folder_path, 3, {}, &num_rows, &num_classes, 0, 11);
|
|
EXPECT_TRUE(num_rows == 3 && num_classes == 4);
|
|
}
|
|
|
|
TEST_F(MindDataTestImageFolderSampler, TestImageFolderSharding1) {
|
|
std::unique_ptr<Sampler> sampler = std::make_unique<DistributedSampler>(4, 0, false);
|
|
std::string folder_path = datasets_root_path_ + "/testPK/data";
|
|
// numWrks, rows, conns, path, shuffle, sampler, map, numSamples, decode
|
|
auto tree = Build({ImageFolder(16, 2, 32, folder_path, false, std::move(sampler), {}, 5)});
|
|
tree->Prepare();
|
|
Status rc = tree->Launch();
|
|
int32_t labels[5] = {0, 0, 0, 1, 1};
|
|
if (rc.IsError()) {
|
|
MS_LOG(ERROR) << "Return code error detected during tree launch: " << common::SafeCStr(rc.ToString()) << ".";
|
|
EXPECT_TRUE(false);
|
|
} else {
|
|
DatasetIterator di(tree);
|
|
TensorMap tensor_map;
|
|
rc = di.GetNextAsMap(&tensor_map);
|
|
EXPECT_TRUE(rc.IsOk());
|
|
uint64_t i = 0;
|
|
int32_t label = 0;
|
|
while (tensor_map.size() != 0) {
|
|
tensor_map["label"]->GetItemAt<int32_t>(&label, {});
|
|
EXPECT_EQ(labels[i], label);
|
|
MS_LOG(DEBUG) << "row:" << i << "\tlabel:" << label << "\n";
|
|
i++;
|
|
di.GetNextAsMap(&tensor_map);
|
|
}
|
|
EXPECT_TRUE(i == 5);
|
|
}
|
|
}
|
|
|
|
TEST_F(MindDataTestImageFolderSampler, TestImageFolderSharding2) {
|
|
std::unique_ptr<Sampler> sampler = std::make_unique<DistributedSampler>(4, 3, false);
|
|
std::string folder_path = datasets_root_path_ + "/testPK/data";
|
|
// numWrks, rows, conns, path, shuffle, sampler, map, numSamples, decode
|
|
auto tree = Build({ImageFolder(16, 16, 32, folder_path, false, std::move(sampler), {}, 12)});
|
|
tree->Prepare();
|
|
Status rc = tree->Launch();
|
|
uint32_t labels[11] = {0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3};
|
|
if (rc.IsError()) {
|
|
MS_LOG(ERROR) << "Return code error detected during tree launch: " << common::SafeCStr(rc.ToString()) << ".";
|
|
EXPECT_TRUE(false);
|
|
} else {
|
|
DatasetIterator di(tree);
|
|
TensorMap tensor_map;
|
|
rc = di.GetNextAsMap(&tensor_map);
|
|
EXPECT_TRUE(rc.IsOk());
|
|
uint64_t i = 0;
|
|
int32_t label = 0;
|
|
while (tensor_map.size() != 0) {
|
|
tensor_map["label"]->GetItemAt<int32_t>(&label, {});
|
|
EXPECT_EQ(labels[i], label);
|
|
MS_LOG(DEBUG) << "row:" << i << "\tlabel:" << label << "\n";
|
|
i++;
|
|
di.GetNextAsMap(&tensor_map);
|
|
}
|
|
EXPECT_TRUE(i == 11);
|
|
}
|
|
}
|