forked from mindspore-Ecosystem/mindspore
!14792 add testcase for side_effect_expression
From: @woshixiaoli Reviewed-by: @zh_qh,@hwhewei Signed-off-by: @zh_qh
This commit is contained in:
commit
ceb63371c2
|
@ -26,7 +26,7 @@ from mindspore.ops.composite import GradOperation
|
||||||
from mindspore.common import ParameterTuple
|
from mindspore.common import ParameterTuple
|
||||||
|
|
||||||
|
|
||||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
context.set_context(mode=context.GRAPH_MODE)
|
||||||
|
|
||||||
|
|
||||||
class _Grad(Cell):
|
class _Grad(Cell):
|
||||||
|
@ -644,3 +644,47 @@ def test_highgrad_one_input_third_grad():
|
||||||
net, [GradOfFirstInput, GradOfFirstInput, GradOfFirstInput])
|
net, [GradOfFirstInput, GradOfFirstInput, GradOfFirstInput])
|
||||||
third_grad = grad_net(x)
|
third_grad = grad_net(x)
|
||||||
assert (third_grad.asnumpy() == np.array([0, 0]).astype(np.float32)).all()
|
assert (third_grad.asnumpy() == np.array([0, 0]).astype(np.float32)).all()
|
||||||
|
|
||||||
|
|
||||||
|
class SideEffectControlFlowAssignDependWhileNet(Cell):
|
||||||
|
def __init__(self):
|
||||||
|
super().__init__()
|
||||||
|
self.parameter1 = Parameter(Tensor([199.0], ms.float32), name="parameter1")
|
||||||
|
self.assign = P.Assign()
|
||||||
|
self.assignadd = P.AssignAdd()
|
||||||
|
self.addn = P.AddN()
|
||||||
|
self.depend = P.Depend()
|
||||||
|
|
||||||
|
def construct(self, x, y, z):
|
||||||
|
p1 = self.assign(self.parameter1, x)
|
||||||
|
while self.parameter1 < y:
|
||||||
|
x = self.addn((x, x))
|
||||||
|
p2 = self.assignadd(self.parameter1, z)
|
||||||
|
self.depend(p2, p1)
|
||||||
|
return x
|
||||||
|
|
||||||
|
def grad_mindspore_impl(self, params1, params2, params3, grad_ys):
|
||||||
|
grad_net = GradOfAllInputsAndParams(self)
|
||||||
|
grad_net.set_train()
|
||||||
|
grad_out = grad_net(params1, params2, params3, grad_ys)
|
||||||
|
return grad_out
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.level0
|
||||||
|
@pytest.mark.platform_arm_ascend_training
|
||||||
|
@pytest.mark.platform_x86_gpu_training
|
||||||
|
@pytest.mark.platform_x86_cpu
|
||||||
|
@pytest.mark.env_onecard
|
||||||
|
def test_side_effect_grad_control_flow_assign_depend_while_net():
|
||||||
|
context.set_context(mode=context.GRAPH_MODE)
|
||||||
|
net = SideEffectControlFlowAssignDependWhileNet()
|
||||||
|
grad_ys = Tensor([18.0], ms.float32)
|
||||||
|
inputs1 = Tensor([9.0], ms.float32)
|
||||||
|
inputs2 = Tensor([6.0], ms.float32)
|
||||||
|
inputs3 = Tensor([3.0], ms.float32)
|
||||||
|
out1 = net.grad_mindspore_impl(inputs1, inputs2, inputs3, grad_ys)
|
||||||
|
context.set_context(mode=context.PYNATIVE_MODE)
|
||||||
|
net = SideEffectControlFlowAssignDependWhileNet()
|
||||||
|
out2 = net.grad_mindspore_impl(inputs1, inputs2, inputs3, grad_ys)
|
||||||
|
allclose_nparray(out1[0][0].asnumpy(), out2[0][0].asnumpy(), 0.001, 0.001)
|
||||||
|
allclose_nparray(out1[1][0].asnumpy(), out2[1][0].asnumpy(), 0.001, 0.001)
|
||||||
|
|
Loading…
Reference in New Issue