diff --git a/mindspore/nn/layer/image.py b/mindspore/nn/layer/image.py index b46ac4cd6ec..3e139a2db59 100644 --- a/mindspore/nn/layer/image.py +++ b/mindspore/nn/layer/image.py @@ -95,6 +95,11 @@ def _gauss_kernel_helper(filter_size): g = Tensor(g) return filter_size, g +@constexpr +def _check_input_4d(input_shape, param_name, func_name): + if len(input_shape) != 4: + raise ValueError(f"{func_name} {param_name} should be 4d, but got shape {input_shape}") + return True class SSIM(Cell): r""" @@ -146,6 +151,9 @@ class SSIM(Cell): self.mean = P.DepthwiseConv2dNative(channel_multiplier=1, kernel_size=filter_size) def construct(self, img1, img2): + _check_input_4d(F.shape(img1), "img1", "SSIM") + _check_input_4d(F.shape(img2), "img2", "SSIM") + P.SameTypeShape()(img1, img2) max_val = _convert_img_dtype_to_float32(self.max_val, self.max_val) img1 = _convert_img_dtype_to_float32(img1, self.max_val) img2 = _convert_img_dtype_to_float32(img2, self.max_val) @@ -236,6 +244,9 @@ class PSNR(Cell): self.max_val = max_val def construct(self, img1, img2): + _check_input_4d(F.shape(img1), "img1", "PSNR") + _check_input_4d(F.shape(img2), "img2", "PSNR") + P.SameTypeShape()(img1, img2) max_val = _convert_img_dtype_to_float32(self.max_val, self.max_val) img1 = _convert_img_dtype_to_float32(img1, self.max_val) img2 = _convert_img_dtype_to_float32(img2, self.max_val) diff --git a/tests/ut/python/nn/test_psnr.py b/tests/ut/python/nn/test_psnr.py index 32e7b570aa2..c07d2468106 100644 --- a/tests/ut/python/nn/test_psnr.py +++ b/tests/ut/python/nn/test_psnr.py @@ -18,10 +18,12 @@ test psnr import numpy as np import pytest import mindspore.nn as nn +from mindspore.common import dtype as mstype from mindspore.common.api import _executor from mindspore import Tensor + class PSNRNet(nn.Cell): def __init__(self, max_val=1.0): super(PSNRNet, self).__init__() @@ -59,3 +61,38 @@ def test_psnr_max_val_zero(): max_val = 0 with pytest.raises(ValueError): net = PSNRNet(max_val) + +def test_psnr_different_shape(): + shape_1 = (8, 3, 16, 16) + shape_2 = (8, 3, 8, 8) + img1 = Tensor(np.random.random(shape_1)) + img2 = Tensor(np.random.random(shape_2)) + net = PSNRNet() + with pytest.raises(ValueError): + _executor.compile(net, img1, img2) + +def test_psnr_different_dtype(): + dtype_1 = mstype.float32 + dtype_2 = mstype.float16 + img1 = Tensor(np.random.random((8, 3, 16, 16)), dtype=dtype_1) + img2 = Tensor(np.random.random((8, 3, 16, 16)), dtype=dtype_2) + net = PSNRNet() + with pytest.raises(TypeError): + _executor.compile(net, img1, img2) + +def test_psnr_invalid_5d_input(): + shape_1 = (8, 3, 16, 16) + shape_2 = (8, 3, 8, 8) + invalid_shape = (8, 3, 16, 16, 1) + img1 = Tensor(np.random.random(shape_1)) + invalid_img1 = Tensor(np.random.random(invalid_shape)) + img2 = Tensor(np.random.random(shape_2)) + invalid_img2 = Tensor(np.random.random(invalid_shape)) + + net = PSNRNet() + with pytest.raises(ValueError): + _executor.compile(net, invalid_img1, img2) + with pytest.raises(ValueError): + _executor.compile(net, img1, invalid_img2) + with pytest.raises(ValueError): + _executor.compile(net, invalid_img1, invalid_img2) diff --git a/tests/ut/python/nn/test_ssim.py b/tests/ut/python/nn/test_ssim.py index 77d065b100a..7389c2dbdad 100644 --- a/tests/ut/python/nn/test_ssim.py +++ b/tests/ut/python/nn/test_ssim.py @@ -18,6 +18,7 @@ test ssim import numpy as np import pytest import mindspore.nn as nn +import mindspore.common.dtype as mstype from mindspore.common.api import _executor from mindspore import Tensor @@ -93,3 +94,38 @@ def test_ssim_k1_k2_wrong_value(): net = SSIMNet(k2=0.0) with pytest.raises(ValueError): net = SSIMNet(k2=-1.0) + +def test_ssim_different_shape(): + shape_1 = (8, 3, 16, 16) + shape_2 = (8, 3, 8, 8) + img1 = Tensor(np.random.random(shape_1)) + img2 = Tensor(np.random.random(shape_2)) + net = SSIMNet() + with pytest.raises(ValueError): + _executor.compile(net, img1, img2) + +def test_ssim_different_dtype(): + dtype_1 = mstype.float32 + dtype_2 = mstype.float16 + img1 = Tensor(np.random.random((8, 3, 16, 16)), dtype=dtype_1) + img2 = Tensor(np.random.random((8, 3, 16, 16)), dtype=dtype_2) + net = SSIMNet() + with pytest.raises(TypeError): + _executor.compile(net, img1, img2) + +def test_ssim_invalid_5d_input(): + shape_1 = (8, 3, 16, 16) + shape_2 = (8, 3, 8, 8) + invalid_shape = (8, 3, 16, 16, 1) + img1 = Tensor(np.random.random(shape_1)) + invalid_img1 = Tensor(np.random.random(invalid_shape)) + img2 = Tensor(np.random.random(shape_2)) + invalid_img2 = Tensor(np.random.random(invalid_shape)) + + net = SSIMNet() + with pytest.raises(ValueError): + _executor.compile(net, invalid_img1, img2) + with pytest.raises(ValueError): + _executor.compile(net, img1, invalid_img2) + with pytest.raises(ValueError): + _executor.compile(net, invalid_img1, invalid_img2)