forked from mindspore-Ecosystem/mindspore
Reduce/Transpose/TensorAdd add multi thread Support and Fix reduce bug!
This commit is contained in:
parent
04349c27eb
commit
c0a7a23fa3
|
@ -14,6 +14,8 @@
|
|||
* limitations under the License.
|
||||
*/
|
||||
#include "backend/kernel_compiler/cpu/cpu_kernel.h"
|
||||
#include <algorithm>
|
||||
#include <utility>
|
||||
#include "common/thread_pool.h"
|
||||
|
||||
namespace mindspore {
|
||||
|
@ -119,5 +121,118 @@ std::vector<size_t> CPUKernelUtils::FlatShapeByAxis(const std::vector<size_t> &s
|
|||
return flat_shape;
|
||||
}
|
||||
|
||||
BroadcastIterator::BroadcastIterator(std::vector<size_t> input_shape_a, std::vector<size_t> input_shape_b,
|
||||
std::vector<size_t> output_shape)
|
||||
: input_shape_a_(std::move(input_shape_a)),
|
||||
input_shape_b_(std::move(input_shape_b)),
|
||||
output_shape_(std::move(output_shape)) {
|
||||
output_dimension_ = SizeToInt(output_shape_.size()); // Assign dimension to int for iterator
|
||||
BroadcastShape();
|
||||
// Allocate strides memory
|
||||
input_strides_a_.resize(output_dimension_);
|
||||
input_strides_b_.resize(output_dimension_);
|
||||
input_back_strides_a_.resize(output_dimension_);
|
||||
input_back_strides_b_.resize(output_dimension_);
|
||||
coordinates_.resize(output_dimension_);
|
||||
InitStrides();
|
||||
}
|
||||
|
||||
void BroadcastIterator::SetPos(size_t pos) {
|
||||
for (int i = output_dimension_ - 1; i >= 0 && pos != 0; --i) {
|
||||
coordinates_[i] = pos % output_shape_[i];
|
||||
input_pos_[0] += coordinates_[i] * input_strides_a_[i];
|
||||
input_pos_[1] += coordinates_[i] * input_strides_b_[i];
|
||||
pos /= output_shape_[i];
|
||||
}
|
||||
}
|
||||
|
||||
void BroadcastIterator::GenNextPos() {
|
||||
// Calculate output next coordinate
|
||||
for (int i = output_dimension_ - 1; i >= 0; --i) {
|
||||
if (coordinates_[i] + 1 == output_shape_[i]) {
|
||||
coordinates_[i] = 0;
|
||||
input_pos_[0] -= input_back_strides_a_[i];
|
||||
input_pos_[1] -= input_back_strides_b_[i];
|
||||
} else {
|
||||
++coordinates_[i];
|
||||
input_pos_[0] += input_strides_a_[i];
|
||||
input_pos_[1] += input_strides_b_[i];
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void BroadcastIterator::BroadcastShape() {
|
||||
int input_dimension_a = input_shape_a_.size();
|
||||
if (input_dimension_a < output_dimension_) {
|
||||
input_shape_a_.insert(input_shape_a_.begin(), output_dimension_ - input_dimension_a, 1);
|
||||
}
|
||||
|
||||
int input_dimension_b = input_shape_b_.size();
|
||||
if (input_dimension_b < output_dimension_) {
|
||||
input_shape_b_.insert(input_shape_b_.begin(), output_dimension_ - input_dimension_b, 1);
|
||||
}
|
||||
}
|
||||
|
||||
void BroadcastIterator::InitStrides() {
|
||||
input_strides_a_[output_dimension_ - 1] = 1;
|
||||
input_strides_b_[output_dimension_ - 1] = 1;
|
||||
for (int i = output_dimension_ - 2; i >= 0; --i) {
|
||||
input_strides_a_[i] = input_shape_a_[i + 1] * input_strides_a_[i + 1];
|
||||
input_strides_b_[i] = input_shape_b_[i + 1] * input_strides_b_[i + 1];
|
||||
input_back_strides_a_[i + 1] = (input_shape_a_[i + 1] - 1) * input_strides_a_[i + 1];
|
||||
input_back_strides_b_[i + 1] = (input_shape_b_[i + 1] - 1) * input_strides_b_[i + 1];
|
||||
}
|
||||
|
||||
// Update strides for broadcast
|
||||
// While the axis value is 1, the stride is 0
|
||||
std::transform(input_strides_a_.begin(), input_strides_a_.end(), input_shape_a_.begin(), input_strides_a_.begin(),
|
||||
[](const auto &a, const auto &b) { return b == 1 ? 0 : a; });
|
||||
std::transform(input_strides_b_.begin(), input_strides_b_.end(), input_shape_b_.begin(), input_strides_b_.begin(),
|
||||
[](const auto &a, const auto &b) { return b == 1 ? 0 : a; });
|
||||
}
|
||||
|
||||
TransposeIterator::TransposeIterator(std::vector<size_t> output_shape, std::vector<size_t> axes,
|
||||
const std::vector<size_t> &input_shape)
|
||||
: shape_(std::move(output_shape)), axes_(std::move(axes)) {
|
||||
// Calculate strides
|
||||
dimension_ = shape_.size();
|
||||
std::vector<uint32_t> strides(dimension_, 1);
|
||||
for (int i = dimension_ - 2; i >= 0; --i) {
|
||||
strides[i] = input_shape[i + 1] * strides[i + 1];
|
||||
}
|
||||
|
||||
// Swap shape ans strides and calculate back strides
|
||||
strides_.resize(dimension_);
|
||||
back_strides_.resize(dimension_);
|
||||
for (int i = dimension_ - 1; i >= 0; --i) {
|
||||
strides_[i] = strides[axes_[i]];
|
||||
back_strides_[i] = (shape_[i] - 1) * strides_[i];
|
||||
}
|
||||
|
||||
// Calculate coordinate by pos
|
||||
coordinates_.resize(dimension_);
|
||||
}
|
||||
|
||||
void TransposeIterator::SetPos(size_t pos) {
|
||||
for (int i = dimension_ - 1; i >= 0 && pos != 0; --i) {
|
||||
coordinates_[i] = pos % shape_[i];
|
||||
pos_ += coordinates_[i] * strides_[i];
|
||||
pos /= shape_[i];
|
||||
}
|
||||
}
|
||||
|
||||
void TransposeIterator::GenNextPos() {
|
||||
for (int i = dimension_ - 1; i >= 0; --i) {
|
||||
if (coordinates_[i] + 1 == shape_[i]) {
|
||||
coordinates_[i] = 0;
|
||||
pos_ -= back_strides_[i];
|
||||
} else {
|
||||
coordinates_[i]++;
|
||||
pos_ += strides_[i];
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
|
|
@ -145,6 +145,48 @@ class CPUKernelUtils {
|
|||
static void ParallelFor(const CTask &task, size_t count);
|
||||
static std::vector<size_t> FlatShapeByAxis(const std::vector<size_t> &shape, int axis);
|
||||
};
|
||||
|
||||
class BroadcastIterator {
|
||||
public:
|
||||
BroadcastIterator(std::vector<size_t> input_shape_a, std::vector<size_t> input_shape_b,
|
||||
std::vector<size_t> output_shape);
|
||||
inline size_t GetInputPosA() const { return input_pos_[0]; }
|
||||
inline size_t GetInputPosB() const { return input_pos_[1]; }
|
||||
void SetPos(size_t pos);
|
||||
void GenNextPos();
|
||||
|
||||
private:
|
||||
void BroadcastShape();
|
||||
void InitStrides();
|
||||
|
||||
std::vector<size_t> coordinates_;
|
||||
std::vector<size_t> input_shape_a_;
|
||||
std::vector<size_t> input_shape_b_;
|
||||
std::vector<size_t> output_shape_;
|
||||
std::vector<size_t> input_strides_a_;
|
||||
std::vector<size_t> input_strides_b_;
|
||||
std::vector<size_t> input_back_strides_a_;
|
||||
std::vector<size_t> input_back_strides_b_;
|
||||
std::array<size_t, 2> input_pos_{0};
|
||||
int output_dimension_{0};
|
||||
};
|
||||
|
||||
class TransposeIterator {
|
||||
public:
|
||||
TransposeIterator(std::vector<size_t> output_shape, std::vector<size_t> axes, const std::vector<size_t> &input_shape);
|
||||
inline size_t GetPos() const { return pos_; }
|
||||
void SetPos(size_t pos);
|
||||
void GenNextPos();
|
||||
|
||||
private:
|
||||
int dimension_{0};
|
||||
std::vector<size_t> coordinates_;
|
||||
std::vector<size_t> shape_;
|
||||
std::vector<size_t> strides_;
|
||||
std::vector<size_t> back_strides_;
|
||||
std::vector<size_t> axes_;
|
||||
size_t pos_{0};
|
||||
};
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
||||
|
|
|
@ -18,13 +18,10 @@
|
|||
#include <string>
|
||||
#include <vector>
|
||||
#include <algorithm>
|
||||
#include <unordered_set>
|
||||
#include <utility>
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
namespace {
|
||||
const size_t kMaxDim = 10;
|
||||
} // namespace
|
||||
template <typename T>
|
||||
void ReduceCPUKernel<T>::InitKernel(const CNodePtr &kernel_node) {
|
||||
MS_EXCEPTION_IF_NULL(kernel_node);
|
||||
|
@ -37,10 +34,14 @@ void ReduceCPUKernel<T>::InitKernel(const CNodePtr &kernel_node) {
|
|||
} else {
|
||||
MS_LOG(EXCEPTION) << "Attribute is invalid";
|
||||
}
|
||||
|
||||
int dimension = input_shape_.size();
|
||||
std::transform(axis_.begin(), axis_.end(), axis_.begin(),
|
||||
[dimension](const auto &a) { return a < 0 ? dimension + a : a; });
|
||||
sort(axis_.begin(), axis_.end());
|
||||
// Delete the duplicate axis.
|
||||
auto last = std::unique(axis_.begin(), axis_.end());
|
||||
axis_.erase(last, axis_.end());
|
||||
auto kernel_name = AnfAlgo::GetCNodeName(kernel_node);
|
||||
if (kernel_name == "ReduceMax") {
|
||||
reduce_type_ = 1;
|
||||
|
@ -57,8 +58,6 @@ void ReduceCPUKernel<T>::InitKernel(const CNodePtr &kernel_node) {
|
|||
} else {
|
||||
MS_LOG(EXCEPTION) << "unsupported reduce type: " << reduce_type_;
|
||||
}
|
||||
|
||||
CheckParameter();
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
|
@ -68,7 +67,7 @@ bool ReduceCPUKernel<T>::Launch(const std::vector<kernel::AddressPtr> &inputs,
|
|||
size_t input_size = inputs[0]->size / sizeof(T);
|
||||
auto input_addr = reinterpret_cast<T *>(inputs[0]->addr);
|
||||
auto output_addr = reinterpret_cast<T *>(outputs[0]->addr);
|
||||
if (axis_.empty()) {
|
||||
if (axis_.empty() || input_shape_.empty() || input_shape_.size() == 1) {
|
||||
// Get one ret
|
||||
*output_addr = input_addr[0];
|
||||
for (size_t i = 1; i < input_size; ++i) {
|
||||
|
@ -78,66 +77,18 @@ bool ReduceCPUKernel<T>::Launch(const std::vector<kernel::AddressPtr> &inputs,
|
|||
*output_addr /= input_size;
|
||||
}
|
||||
} else {
|
||||
// transpose->calculate strides->calculate ret
|
||||
std::vector<size_t> out_shape;
|
||||
std::vector<size_t> strides;
|
||||
std::vector<size_t> back_strides;
|
||||
size_t stride;
|
||||
CalculateTransposeInfo(&out_shape, &strides, &back_strides, &stride);
|
||||
int dimension = input_shape_.size();
|
||||
std::vector<size_t> coordinates(dimension);
|
||||
auto get_next_pos = [&coordinates, &out_shape, &strides, &back_strides, &dimension](size_t &curr_pos) {
|
||||
for (int i = dimension - 1; i >= 0; --i) {
|
||||
if (coordinates[i] + 1 == out_shape[i]) {
|
||||
coordinates[i] = 0;
|
||||
curr_pos -= back_strides[i];
|
||||
} else {
|
||||
coordinates[i]++;
|
||||
curr_pos += strides[i];
|
||||
break;
|
||||
}
|
||||
}
|
||||
};
|
||||
size_t output_size = outputs[0]->size / sizeof(T);
|
||||
size_t pos = 0;
|
||||
for (size_t i = 0; i < output_size; ++i) {
|
||||
if (i != 0) {
|
||||
get_next_pos(pos);
|
||||
}
|
||||
output_addr[i] = input_addr[pos];
|
||||
for (size_t j = 1; j < stride; ++j) {
|
||||
get_next_pos(pos);
|
||||
reduce_func_(input_addr, pos, &output_addr[i]);
|
||||
}
|
||||
if (reduce_type_ == 4) { // 4 is reduce mean
|
||||
output_addr[i] /= stride;
|
||||
}
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void ReduceCPUKernel<T>::CalculateTransposeInfo(std::vector<size_t> *new_shape, std::vector<size_t> *strides,
|
||||
std::vector<size_t> *back_strides, size_t *stride) const {
|
||||
int dimension = input_shape_.size();
|
||||
std::vector<size_t> input_strides(dimension);
|
||||
input_strides[dimension - 1] = 1;
|
||||
for (int i = dimension - 2; i >= 0; --i) {
|
||||
input_strides[i] = input_shape_[i + 1] * input_strides[i + 1];
|
||||
}
|
||||
|
||||
// Calculate transpose axes and stride
|
||||
std::vector<size_t> axes(dimension);
|
||||
int j = 0;
|
||||
int k = 0;
|
||||
*stride = 1;
|
||||
int dimension = input_shape_.size();
|
||||
size_t stride = 1;
|
||||
std::vector<size_t> axes(input_shape_.size());
|
||||
size_t j = 0;
|
||||
size_t k = 0;
|
||||
for (int i = 0; i < dimension; ++i) {
|
||||
if (i != axis_[j]) {
|
||||
if (j == axis_.size() || i != axis_[j]) {
|
||||
axes[k] = i;
|
||||
++k;
|
||||
} else {
|
||||
*stride *= input_shape_[i];
|
||||
stride *= input_shape_[i];
|
||||
++j;
|
||||
}
|
||||
}
|
||||
|
@ -145,40 +96,31 @@ void ReduceCPUKernel<T>::CalculateTransposeInfo(std::vector<size_t> *new_shape,
|
|||
axes[k] = it;
|
||||
++k;
|
||||
}
|
||||
|
||||
// Calculate strides, new_shape, back strides
|
||||
strides->resize(dimension);
|
||||
new_shape->resize(dimension);
|
||||
back_strides->resize(dimension);
|
||||
for (int i = dimension - 1; i >= 0; --i) {
|
||||
(*strides)[i] = input_strides[axes[i]];
|
||||
(*new_shape)[i] = input_shape_[axes[i]];
|
||||
(*back_strides)[i] = ((*new_shape)[i] - 1) * (*strides)[i];
|
||||
// Calculate transpose shape
|
||||
std::vector<size_t> transpose_shape(input_shape_.size());
|
||||
for (int i = 0; i < dimension; ++i) {
|
||||
transpose_shape[i] = input_shape_[axes[i]];
|
||||
}
|
||||
size_t output_size = outputs[0]->size / sizeof(T);
|
||||
TransposeIterator base_iter(std::move(transpose_shape), std::move(axes), input_shape_);
|
||||
auto task = [this, &base_iter, input_addr, output_addr, stride](size_t start, size_t end) {
|
||||
auto iter = base_iter;
|
||||
iter.SetPos(start * stride);
|
||||
for (size_t i = start; i < end; ++i) {
|
||||
output_addr[i] = input_addr[iter.GetPos()];
|
||||
iter.GenNextPos();
|
||||
for (size_t j = 1; j < stride; ++j) {
|
||||
reduce_func_(input_addr, iter.GetPos(), &output_addr[i]);
|
||||
iter.GenNextPos();
|
||||
}
|
||||
if (reduce_type_ == 4) { // 4 is reduce mean
|
||||
output_addr[i] /= stride;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void ReduceCPUKernel<T>::CheckParameter() const {
|
||||
if (input_shape_.empty() || input_shape_.size() > kMaxDim) {
|
||||
MS_LOG(EXCEPTION) << "Invalid input tensor of dimension: " << input_shape_.size();
|
||||
}
|
||||
|
||||
if (axis_.empty()) {
|
||||
MS_LOG(INFO) << "axis is empty";
|
||||
return;
|
||||
}
|
||||
|
||||
std::unordered_set<int> checker(axis_.begin(), axis_.end());
|
||||
if (checker.size() != axis_.size()) {
|
||||
MS_LOG(EXCEPTION) << "Duplicate value in axis";
|
||||
}
|
||||
|
||||
int maxDimension = input_shape_.size();
|
||||
for (auto &axis : axis_) {
|
||||
if (axis >= maxDimension) {
|
||||
MS_LOG(EXCEPTION) << "Invalid value in axis: " << axis;
|
||||
}
|
||||
};
|
||||
CPUKernelUtils::ParallelFor(task, output_size);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
|
|
@ -34,9 +34,6 @@ class ReduceCPUKernel : public CPUKernel {
|
|||
const std::vector<AddressPtr> &outputs) override;
|
||||
|
||||
private:
|
||||
void CheckParameter() const;
|
||||
void CalculateTransposeInfo(std::vector<size_t> *new_shape, std::vector<size_t> *strides,
|
||||
std::vector<size_t> *back_strides, size_t *stride) const;
|
||||
std::vector<size_t> input_shape_;
|
||||
std::vector<int64_t> axis_;
|
||||
int reduce_type_{0};
|
||||
|
|
|
@ -14,71 +14,11 @@
|
|||
* limitations under the License.
|
||||
*/
|
||||
#include "backend/kernel_compiler/cpu/tensoradd_cpu_kernel.h"
|
||||
#include <functional>
|
||||
#include <vector>
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
namespace {
|
||||
struct Iterator {
|
||||
std::vector<size_t> coordinates_;
|
||||
std::vector<size_t> input_shape_a_;
|
||||
std::vector<size_t> input_shape_b_;
|
||||
std::vector<size_t> output_shape_;
|
||||
std::vector<size_t> input_strides_a_;
|
||||
std::vector<size_t> input_strides_b_;
|
||||
int output_dimension_pos_{0};
|
||||
size_t pos_{0};
|
||||
Iterator(const std::vector<size_t> &input_shape_a, const std::vector<size_t> &input_shape_b,
|
||||
const std::vector<size_t> &output_shape, const std::vector<size_t> &input_strides_a,
|
||||
const std::vector<size_t> &input_strides_b, size_t pos)
|
||||
: input_shape_a_(input_shape_a),
|
||||
input_shape_b_(input_shape_b),
|
||||
output_shape_(output_shape),
|
||||
input_strides_a_(input_strides_a),
|
||||
input_strides_b_(input_strides_b),
|
||||
pos_{pos} {
|
||||
output_dimension_pos_ = output_shape.size() - 1;
|
||||
// Calculate coordinate with pos
|
||||
coordinates_.resize(output_dimension_pos_ + 1);
|
||||
int tmp = pos_;
|
||||
for (int i = output_dimension_pos_; i >= 0 && tmp != 0; --i) {
|
||||
coordinates_[i] = tmp % output_shape_[i];
|
||||
tmp /= output_shape_[i];
|
||||
}
|
||||
}
|
||||
|
||||
void UpdateCoordinates() {
|
||||
// Calculate output next coordinate
|
||||
for (int i = output_dimension_pos_; i >= 0; --i) {
|
||||
if (coordinates_[i] + 1 == output_shape_[i]) {
|
||||
coordinates_[i] = 0;
|
||||
} else {
|
||||
++coordinates_[i];
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void GenPoints(std::array<size_t, 2> *position) {
|
||||
auto &idx = *position;
|
||||
idx = {0, 0};
|
||||
for (int k = 0; k < output_dimension_pos_; ++k) {
|
||||
if (input_shape_a_[k] > 1) {
|
||||
idx[0] += coordinates_[k] * input_strides_a_[k];
|
||||
}
|
||||
if (input_shape_b_[k] > 1) {
|
||||
idx[1] += coordinates_[k] * input_strides_b_[k];
|
||||
}
|
||||
}
|
||||
if (input_shape_a_[output_dimension_pos_] > 1) {
|
||||
idx[0] += coordinates_[output_dimension_pos_];
|
||||
}
|
||||
if (input_shape_b_[output_dimension_pos_] > 1) {
|
||||
idx[1] += coordinates_[output_dimension_pos_];
|
||||
}
|
||||
}
|
||||
};
|
||||
} // namespace
|
||||
|
||||
void TensorAddCPUKernel::InitKernel(const CNodePtr &kernel_node) {
|
||||
MS_EXCEPTION_IF_NULL(kernel_node);
|
||||
|
@ -96,55 +36,25 @@ bool TensorAddCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs,
|
|||
auto output_addr = reinterpret_cast<float *>(outputs[0]->addr);
|
||||
auto output_size = outputs[0]->size / sizeof(float);
|
||||
if (input_shape_a_ == input_shape_b_) {
|
||||
NormalProcess(input_addr_a, input_addr_b, output_addr, output_size);
|
||||
auto task = [output_addr, input_addr_a, input_addr_b](size_t start, size_t end) {
|
||||
for (size_t i = start; i < end; ++i) {
|
||||
output_addr[i] = input_addr_a[i] + input_addr_b[i];
|
||||
}
|
||||
};
|
||||
CPUKernelUtils::ParallelFor(task, output_size);
|
||||
} else { // Broadcast
|
||||
BroadcastProcess(input_addr_a, input_addr_b, output_addr, output_size);
|
||||
BroadcastIterator base_iter(input_shape_a_, input_shape_b_, output_shape_);
|
||||
auto task = [&base_iter, output_addr, input_addr_a, input_addr_b](size_t start, size_t end) {
|
||||
auto iter = base_iter;
|
||||
iter.SetPos(start);
|
||||
for (size_t i = start; i < end; ++i) {
|
||||
output_addr[i] = input_addr_a[iter.GetInputPosA()] + input_addr_b[iter.GetInputPosB()];
|
||||
iter.GenNextPos();
|
||||
}
|
||||
};
|
||||
CPUKernelUtils::ParallelFor(task, output_size);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
void TensorAddCPUKernel::NormalProcess(const float *input_a, const float *input_b, float *output, size_t size) {
|
||||
auto task = [output, input_a, input_b](size_t start, size_t end) {
|
||||
for (size_t i = start; i < end; ++i) {
|
||||
output[i] = input_a[i] + input_b[i];
|
||||
}
|
||||
};
|
||||
CPUKernelUtils::ParallelFor(task, size);
|
||||
}
|
||||
|
||||
void TensorAddCPUKernel::BroadcastProcess(const float *input_a, const float *input_b, float *output, size_t size) {
|
||||
// Broadcast shape
|
||||
int dimension = output_shape_.size();
|
||||
int input_dimension_a = input_shape_a_.size();
|
||||
if (input_dimension_a < dimension) {
|
||||
input_shape_a_.insert(input_shape_a_.begin(), dimension - input_dimension_a, 1);
|
||||
}
|
||||
int input_dimension_b = input_shape_b_.size();
|
||||
if (input_dimension_b < dimension) {
|
||||
input_shape_b_.insert(input_shape_b_.begin(), dimension - input_dimension_b, 1);
|
||||
}
|
||||
|
||||
// Calculate strides
|
||||
CalculateStrides(input_shape_a_, &input_strides_a_);
|
||||
CalculateStrides(input_shape_b_, &input_strides_b_);
|
||||
|
||||
auto task = [this, input_a, input_b, output](size_t start, size_t end) {
|
||||
Iterator iter(input_shape_a_, input_shape_b_, output_shape_, input_strides_a_, input_strides_b_, start);
|
||||
std::array<size_t, 2> position{0};
|
||||
for (size_t i = start; i < end; ++i) {
|
||||
iter.GenPoints(&position);
|
||||
output[i] = input_a[position[0]] + input_b[position[1]];
|
||||
iter.UpdateCoordinates();
|
||||
}
|
||||
};
|
||||
CPUKernelUtils::ParallelFor(task, size);
|
||||
}
|
||||
|
||||
void TensorAddCPUKernel::CalculateStrides(const std::vector<size_t> &shape, std::vector<size_t> *strides) {
|
||||
strides->resize(shape.size(), 1);
|
||||
for (int i = shape.size() - 2; i >= 0; --i) {
|
||||
(*strides)[i] = shape[i + 1] * (*strides)[i + 1];
|
||||
}
|
||||
}
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
|
|
@ -34,15 +34,9 @@ class TensorAddCPUKernel : public CPUKernel {
|
|||
const std::vector<AddressPtr> &outputs) override;
|
||||
|
||||
private:
|
||||
static void NormalProcess(const float *input_a, const float *input_b, float *output, size_t size);
|
||||
void BroadcastProcess(const float *input_a, const float *input_b, float *output, size_t size);
|
||||
static void CalculateStrides(const std::vector<size_t> &, std::vector<size_t> *);
|
||||
std::vector<size_t> input_shape_a_;
|
||||
std::vector<size_t> input_shape_b_;
|
||||
// Define follow var for Broadcast
|
||||
std::vector<size_t> output_shape_;
|
||||
std::vector<size_t> input_strides_a_;
|
||||
std::vector<size_t> input_strides_b_;
|
||||
};
|
||||
|
||||
MS_REG_CPU_KERNEL(
|
||||
|
|
|
@ -17,21 +17,16 @@
|
|||
#include "backend/kernel_compiler/cpu/transpose_cpu_kernel.h"
|
||||
#include <algorithm>
|
||||
#include <vector>
|
||||
#include <unordered_set>
|
||||
#include "runtime/device/cpu/cpu_device_address.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
namespace {
|
||||
const size_t kMaxDim = 10;
|
||||
}
|
||||
|
||||
void TransposeCPUFwdKernel::InitKernel(const CNodePtr &kernel_node) {
|
||||
MS_EXCEPTION_IF_NULL(kernel_node);
|
||||
input_shape_ = AnfAlgo::GetInputDeviceShape(kernel_node, 0);
|
||||
output_shape_ = AnfAlgo::GetOutputDeviceShape(kernel_node, 0);
|
||||
axes_ = AnfAlgo::GetNodeAttr<std::vector<int64_t>>(kernel_node, "perm");
|
||||
CheckParameter();
|
||||
auto tmp = AnfAlgo::GetNodeAttr<std::vector<int64_t>>(kernel_node, "perm");
|
||||
axes_ = {tmp.begin(), tmp.end()};
|
||||
dtype_ = AnfAlgo ::GetPrevNodeOutputDeviceDataType(kernel_node, 0);
|
||||
if (dtype_ == kTypeUnknown) {
|
||||
dtype_ = AnfAlgo::GetPrevNodeOutputInferDataType(kernel_node, 0);
|
||||
|
@ -63,77 +58,22 @@ bool TransposeCPUFwdKernel::Launch(const std::vector<kernel::AddressPtr> &inputs
|
|||
return true;
|
||||
}
|
||||
|
||||
void TransposeCPUFwdKernel::CheckParameter() const {
|
||||
if (input_shape_.size() > kMaxDim) {
|
||||
MS_LOG(EXCEPTION) << "Input tensor is " << input_shape_.size() << ", out of bound max dimension 10";
|
||||
}
|
||||
|
||||
if (input_shape_.empty()) {
|
||||
MS_LOG(EXCEPTION) << "Input tensor is empty";
|
||||
}
|
||||
|
||||
if (input_shape_.size() != axes_.size()) {
|
||||
MS_LOG(EXCEPTION) << "Input perm size is not equal with input shape";
|
||||
}
|
||||
|
||||
// Input axes include the same axis
|
||||
std::unordered_set<int64_t> unique_axes{axes_.begin(), axes_.end()};
|
||||
if (unique_axes.size() != axes_.size()) {
|
||||
MS_LOG(EXCEPTION) << "Input perm is illegal, it has the same axis";
|
||||
}
|
||||
|
||||
// Input axes not in ture range(input_shape_.size())
|
||||
int64_t shape_size = input_shape_.size();
|
||||
for (auto &axis : axes_) {
|
||||
if (axis < 0 || axis >= shape_size) {
|
||||
MS_LOG(EXCEPTION) << "Input perm axis is out of bound input shape size";
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void TransposeCPUFwdKernel::LaunchKernel(const std::vector<AddressPtr> &inputs,
|
||||
const std::vector<AddressPtr> &outputs) {
|
||||
int dimension = input_shape_.size();
|
||||
// Calculate input tensor strides
|
||||
std::array<uint32_t, kMaxDim> input_strides{0};
|
||||
input_strides[dimension - 1] = 1;
|
||||
for (int i = dimension - 2; i >= 0; --i) {
|
||||
input_strides[i] = input_shape_[i + 1] * input_strides[i + 1];
|
||||
}
|
||||
|
||||
// Calculate output strides and back strides
|
||||
std::array<uint32_t, kMaxDim> strides{0};
|
||||
std::array<uint32_t, kMaxDim> back_strides{0};
|
||||
for (int i = dimension - 1; i >= 0; --i) {
|
||||
strides[i] = input_strides[axes_[i]];
|
||||
back_strides[i] = (output_shape_[i] - 1) * strides[i];
|
||||
}
|
||||
|
||||
std::array<uint32_t, kMaxDim> coordinates{0};
|
||||
auto get_next_pos = [&coordinates, &strides, &back_strides, &dimension, this](int curr_pos) {
|
||||
for (int i = dimension - 1; i >= 0; --i) {
|
||||
if (coordinates[i] + 1 == output_shape_[i]) {
|
||||
coordinates[i] = 0;
|
||||
curr_pos -= back_strides[i];
|
||||
} else {
|
||||
coordinates[i]++;
|
||||
curr_pos += strides[i];
|
||||
break;
|
||||
}
|
||||
}
|
||||
return curr_pos;
|
||||
};
|
||||
|
||||
auto input = reinterpret_cast<T *>(inputs[0]->addr);
|
||||
auto output = reinterpret_cast<T *>(outputs[0]->addr);
|
||||
auto input_addr = reinterpret_cast<T *>(inputs[0]->addr);
|
||||
auto output_addr = reinterpret_cast<T *>(outputs[0]->addr);
|
||||
size_t size = IntToSize(inputs[0]->size / sizeof(T));
|
||||
output[0] = input[0];
|
||||
int pos = 0;
|
||||
for (size_t i = 1; i < size; ++i) {
|
||||
pos = get_next_pos(pos);
|
||||
output[i] = input[pos];
|
||||
TransposeIterator base_iter(output_shape_, axes_, input_shape_);
|
||||
auto task = [&base_iter, input_addr, output_addr](size_t start, size_t end) {
|
||||
auto iter = base_iter;
|
||||
iter.SetPos(start);
|
||||
for (size_t i = start; i < end; ++i) {
|
||||
output_addr[i] = input_addr[iter.GetPos()];
|
||||
iter.GenNextPos();
|
||||
}
|
||||
};
|
||||
CPUKernelUtils::ParallelFor(task, size);
|
||||
}
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
|
|
@ -34,13 +34,12 @@ class TransposeCPUFwdKernel : public CPUKernel {
|
|||
const std::vector<AddressPtr> &outputs) override;
|
||||
|
||||
private:
|
||||
void CheckParameter() const;
|
||||
template <typename T>
|
||||
void LaunchKernel(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &outputs);
|
||||
|
||||
std::vector<size_t> input_shape_;
|
||||
std::vector<size_t> output_shape_;
|
||||
std::vector<int64_t> axes_;
|
||||
std::vector<size_t> axes_;
|
||||
TypeId dtype_{kTypeUnknown};
|
||||
using TypeKernel =
|
||||
std::function<void(TransposeCPUFwdKernel *, const std::vector<AddressPtr> &, const std::vector<AddressPtr> &)>;
|
||||
|
|
Loading…
Reference in New Issue