forked from mindspore-Ecosystem/mindspore
update readme
This commit is contained in:
parent
2d35511d7c
commit
87cc57d3aa
|
@ -8,11 +8,11 @@ MobileNetV2 builds upon the ideas from MobileNetV1, using depthwise separable co
|
|||
|
||||
# Dataset
|
||||
|
||||
Dataset used: imagenet
|
||||
Dataset used: imagenet2012
|
||||
|
||||
- Dataset size: ~125G, 1.2W colorful images in 1000 classes
|
||||
- Train: 120G, 1.2W images
|
||||
- Test: 5G, 50000 images
|
||||
- Dataset size: ~125G
|
||||
- Train: 120G, 1281167 images: 1000 directories
|
||||
- Test: 5G, 50000 images: images should be classified into 1000 directories firstly, just like train images
|
||||
- Data format: RGB images.
|
||||
- Note: Data will be processed in src/dataset.py
|
||||
|
||||
|
@ -139,4 +139,4 @@ result: {'acc': 0.71976314102564111} ckpt=/path/to/checkpoint/mobilenet-200_625.
|
|||
| Model for inference | | | |
|
||||
|
||||
# ModelZoo Homepage
|
||||
[Link](https://gitee.com/mindspore/mindspore/tree/master/mindspore/model_zoo)
|
||||
[Link](https://gitee.com/mindspore/mindspore/tree/master/mindspore/model_zoo)
|
||||
|
|
|
@ -10,9 +10,9 @@ MobileNetV2 builds upon the ideas from MobileNetV1, using depthwise separable co
|
|||
|
||||
Dataset used: imagenet
|
||||
|
||||
- Dataset size: ~125G, 1.2W colorful images in 1000 classes
|
||||
- Train: 120G, 1.2W images
|
||||
- Test: 5G, 50000 images
|
||||
- Dataset size: ~125G
|
||||
- Train: 120G, 1281167 images: 1000 directories
|
||||
- Test: 5G, 50000 images: images should be classified into 1000 directories firstly, just like train images
|
||||
- Data format: RGB images.
|
||||
- Note: Data will be processed in src/dataset.py
|
||||
|
||||
|
@ -99,4 +99,4 @@ result: {'acc': 0.71976314102564111} ckpt=/path/to/checkpoint/mobilenet-200_625.
|
|||
|
||||
|
||||
# ModelZoo Homepage
|
||||
[Link](https://gitee.com/mindspore/mindspore/tree/master/mindspore/model_zoo)
|
||||
[Link](https://gitee.com/mindspore/mindspore/tree/master/mindspore/model_zoo)
|
||||
|
|
|
@ -14,7 +14,7 @@ This is an example of training ResNet-50 with ImageNet2012 dataset in MindSpore.
|
|||
> ```
|
||||
> .
|
||||
> ├── ilsvrc # train dataset
|
||||
> └── ilsvrc_eval # infer dataset
|
||||
> └── ilsvrc_eval # infer dataset: images should be classified into 1000 directories firstly, just like train images
|
||||
> ```
|
||||
|
||||
|
||||
|
@ -147,4 +147,4 @@ python train.py --dataset_path=dataset/ilsvrc/train --device_target="GPU" --pre_
|
|||
|
||||
# infer example
|
||||
python eval.py --dataset_path=dataset/ilsvrc/val --device_target="GPU" --checkpoint_path=resnet-90_5004ss.ckpt
|
||||
```
|
||||
```
|
||||
|
|
|
@ -14,7 +14,7 @@ This is an example of training ResNet-50 V1.5 with ImageNet2012 dataset by secon
|
|||
> ```
|
||||
> .
|
||||
> ├── ilsvrc # train dataset
|
||||
> └── ilsvrc_eval # infer dataset
|
||||
> └── ilsvrc_eval # infer dataset: images should be classified into 1000 directories firstly, just like train images
|
||||
> ```
|
||||
|
||||
|
||||
|
|
|
@ -14,7 +14,7 @@ This is an example of training ResNet-50_quant with ImageNet2012 dataset in Mind
|
|||
> ```
|
||||
> .
|
||||
> ├── ilsvrc # train dataset
|
||||
> └── ilsvrc_eval # infer dataset
|
||||
> └── ilsvrc_eval # infer dataset: images should be classified into 1000 directories firstly, just like train images
|
||||
> ```
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue