clean static checking

This commit is contained in:
zhaoting 2021-04-09 18:08:03 +08:00
parent c907c95da5
commit 4ec452149b
77 changed files with 106 additions and 106 deletions

View File

@ -28,8 +28,8 @@ from __future__ import print_function
import os
import numpy as np
import pycocotools.coco as coco
import cv2
import pycocotools.coco as coco
class CenterfaceDataset():
"""

View File

@ -16,6 +16,8 @@
Data operations, will be used in train.py and eval.py
"""
import os
import cv2
import numpy as np
import mindspore.dataset as ds
import mindspore.dataset.vision.c_transforms as C
@ -24,9 +26,6 @@ from src.dataset_utils import lucky, noise_blur, noise_speckle, noise_gamma, noi
randcrop, resize, rdistort, rgeometry, rotate_about_center, whole_rdistort, warp_perspective, random_contrast, \
unify_img_label
import cv2
import numpy as np
cv2.setNumThreads(0)
image_height = None

View File

@ -16,11 +16,6 @@
import argparse
import os
import random
from src.cnn_direction_model import CNNDirectionModel
from src.config import config1 as config
from src.dataset import create_dataset_train
import numpy as np
import mindspore as ms
@ -35,6 +30,10 @@ from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMoni
from mindspore.train.model import Model, ParallelMode
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from src.cnn_direction_model import CNNDirectionModel
from src.config import config1 as config
from src.dataset import create_dataset_train
parser = argparse.ArgumentParser(description='Image classification')
parser.add_argument('--run_distribute', type=bool, default=False, help='Run distribute')
parser.add_argument('--device_num', type=int, default=1, help='Device num.')

View File

@ -15,11 +15,11 @@
"""Dataset preprocessing."""
import os
import numpy as np
from PIL import Image, ImageFile
import mindspore.common.dtype as mstype
import mindspore.dataset as ds
import mindspore.dataset.transforms.c_transforms as C
import mindspore.dataset.vision.c_transforms as vc
from PIL import Image, ImageFile
from src.config import config1, label_dict
from src.ic03_dataset import IC03Dataset
from src.ic13_dataset import IC13Dataset

View File

@ -17,7 +17,7 @@
if [ ! -d out ]; then
mkdir out
fi
cd out
cd out || exit
cmake .. \
-DMINDSPORE_PATH="`pip show mindspore-ascend | grep Location | awk '{print $2"/mindspore"}' | xargs realpath`"
make

View File

@ -67,13 +67,13 @@ do
cp ../*.py ./eval
cp *.sh ./eval
cp -r ../src ./eval
cd ./eval
cd ./eval || exit
env > env.log
CHECKPOINT_FILE_PATH=$file
echo "start eval for checkpoint file: ${CHECKPOINT_FILE_PATH}"
python eval.py --device_id=$DEVICE_ID --image_path=$IMAGE_PATH --dataset_path=$DATASET_PATH --checkpoint_path=$CHECKPOINT_FILE_PATH &> log
echo "end eval for checkpoint file: ${CHECKPOINT_FILE_PATH}"
cd ./submit
cd ./submit || exit
file_base_name=$(basename $file)
zip -r ../../submit_${file_base_name%.*}.zip *.txt
cd ../../

View File

@ -63,7 +63,7 @@ fi
function compile_app()
{
cd ../ascend310_infer
cd ../ascend310_infer || exit
if [ -f "Makefile" ]; then
make clean
fi
@ -113,9 +113,9 @@ function cal_acc()
if [ -f "ubmit.zip" ]; then
rm -f submit.zip
fi
cd output
cd output || exit
zip -r ../submit.zip *.txt
cd -
cd - || exit
}
compile_app

View File

@ -17,7 +17,8 @@ if [ -d out ]; then
rm -rf out
fi
mkdir out && cd out
mkdir out
cd out || exit
if [ -f "Makefile" ]; then
make clean

View File

@ -60,13 +60,13 @@ fi
function compile_app()
{
cd ../ascend310_infer
cd ../ascend310_infer || exit
bash build.sh &> build.log
}
function infer()
{
cd -
cd - || exit
if [ -d result_Files ]; then
rm -rf ./result_Files
fi

View File

@ -13,7 +13,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
path_cur=$(cd "`dirname $0`"; pwd)
path_cur=$(cd "`dirname $0`" || exit; pwd)
build_type="Release"
function preparePath() {

View File

@ -67,9 +67,9 @@ function air_to_om()
function compile_app()
{
cd ../ascend310_infer/src
cd ../ascend310_infer/src || exit
sh build.sh &> build.log
cd -
cd - || exit
}
function infer()

View File

@ -15,9 +15,9 @@
"""coco eval for fasterrcnn"""
import json
import numpy as np
import mmcv
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
import mmcv
_init_value = np.array(0.0)
summary_init = {

View File

@ -18,7 +18,7 @@ rm -rf device
mkdir device
cp ./*.py ./device
cp -r ./src ./device
cd ./device
cd ./device || exit
DATA_DIR=$1

View File

@ -18,7 +18,7 @@ rm -rf evaluation
mkdir evaluation
cp ./*.py ./evaluation
cp -r ./src ./evaluation
cd ./evaluation
cd ./evaluation || exit
export DEVICE_ID=0
export RANK_SIZE=1

View File

@ -13,13 +13,13 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
path_cur=$(cd "`dirname $0`"; pwd)
path_cur=$(cd "`dirname $0`" || exit; pwd)
build_type="Release"
function preparePath() {
rm -rf $1
mkdir -p $1
cd $1
cd $1 || exit
}
function buildA300() {

View File

@ -19,13 +19,13 @@ from __future__ import division
import os
import numpy as np
from numpy import random
import cv2
import mmcv
import mindspore.dataset as de
import mindspore.dataset.vision.c_transforms as C
from mindspore.mindrecord import FileWriter
from src.config import config
import cv2
def bbox_overlaps(bboxes1, bboxes2, mode='iou'):
"""Calculate the ious between each bbox of bboxes1 and bboxes2.

View File

@ -15,10 +15,10 @@
"""coco eval for maskrcnn"""
import json
import numpy as np
import mmcv
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
from pycocotools import mask as maskUtils
import mmcv
from src.config import config

View File

@ -21,6 +21,7 @@ import mmcv
import cv2
import numpy as np
from numpy import random
import mindspore.dataset as de
import mindspore.dataset.vision.c_transforms as C
from mindspore.mindrecord import FileWriter

View File

@ -18,9 +18,9 @@ import argparse
import warnings
import sys
import numpy as np
from tqdm import tqdm
import cv2
from scipy.ndimage.filters import gaussian_filter
from tqdm import tqdm
from pycocotools.coco import COCO as LoadAnn
from pycocotools.cocoeval import COCOeval as MapEval

View File

@ -21,6 +21,7 @@
#include <iostream>
#include <queue>
#include <vector>
#include <utility>
#include <opencv2/opencv.hpp>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
@ -76,7 +77,7 @@ namespace pse_adaptor {
int dx[] = {-1, 1, 0, 0};
int dy[] = {0, 0, -1, 1};
for (int kernal_id = kernels.size() - 2; kernal_id >= 0; --kernal_id) {
for (int kernel_id = kernels.size() - 2; kernel_id >= 0; --kernel_id) {
while (!queue.empty()) {
Point point = queue.front();
queue.pop();
@ -90,7 +91,7 @@ namespace pse_adaptor {
if (tmp_x < 0 || tmp_x >= static_cast<int>(text_line->size())) continue;
if (tmp_y < 0 || tmp_y >= static_cast<int>(text_line->at(1).size())) continue;
if (kernels[kernal_id].at<char>(tmp_x, tmp_y) == 0) continue;
if (kernels[kernel_id].at<char>(tmp_x, tmp_y) == 0) continue;
if (text_line->at(tmp_x)[tmp_y] > 0) continue;
Point point_tmp(tmp_x, tmp_y);

View File

@ -17,17 +17,17 @@
import math
import os
import random
import Polygon as plg
import cv2
import numpy as np
import pyclipper
from PIL import Image
from src.config import config
import numpy as np
import Polygon as plg
import pyclipper
import mindspore.dataset as ds
import mindspore.dataset.vision.py_transforms as py_transforms
from src.config import config
__all__ = ['train_dataset_creator', 'test_dataset_creator']

View File

@ -15,12 +15,12 @@
"""ResNet."""
import math
import numpy as np
from scipy.stats import truncnorm
import mindspore.nn as nn
import mindspore.common.dtype as mstype
from mindspore.ops import operations as P
from mindspore.ops import functional as F
from mindspore.common.tensor import Tensor
from scipy.stats import truncnorm
def _conv_variance_scaling_initializer(in_channel, out_channel, kernel_size):

View File

@ -14,11 +14,11 @@
# ============================================================================
"""ResNet."""
import numpy as np
from scipy.stats import truncnorm
import mindspore.nn as nn
import mindspore.common.dtype as mstype
from mindspore.ops import operations as P
from mindspore.common.tensor import Tensor
from scipy.stats import truncnorm
format_ = "NHWC"
# tranpose shape to NCHW, default init is NHWC.

View File

@ -69,7 +69,7 @@ do
cp ../*.py ./device$i
cp *.sh ./device$i
cp -r ../src ./device$i
cd ./device$i
cd ./device$i || exit
export DEVICE_ID=$i
export RANK_ID=$i
echo "start training for device $i"

View File

@ -60,7 +60,7 @@ mkdir ./train
cp ../*.py ./train
cp *.sh ./train
cp -r ../src ./train
cd ./train
cd ./train || exit
echo "start training for device $DEVICE_ID"
env > env.log
if [ $# == 1 ]

View File

@ -1,12 +1,12 @@
"""ResNet"""
import numpy as np
from scipy.stats import truncnorm
import mindspore.nn as nn
import mindspore.common.dtype as mstype
from mindspore.ops import operations as P
from mindspore.ops import functional as F
from mindspore.common.tensor import Tensor
from scipy.stats import truncnorm
def _conv_variance_scaling_initializer(in_channel, out_channel, kernel_size):

View File

@ -16,11 +16,11 @@
dataset processing.
"""
import os
from PIL import Image, ImageFile
from mindspore.common import dtype as mstype
import mindspore.dataset as de
import mindspore.dataset.transforms.c_transforms as C
import mindspore.dataset.vision.c_transforms as V_C
from PIL import Image, ImageFile
from src.utils.sampler import DistributedSampler
ImageFile.LOAD_TRUNCATED_IMAGES = True

View File

@ -16,11 +16,11 @@
dataset processing.
"""
import os
from PIL import Image, ImageFile
from mindspore.common import dtype as mstype
import mindspore.dataset as de
import mindspore.dataset.transforms.c_transforms as C
import mindspore.dataset.vision.c_transforms as V_C
from PIL import Image, ImageFile
from src.utils.sampler import DistributedSampler
ImageFile.LOAD_TRUNCATED_IMAGES = True

View File

@ -17,7 +17,8 @@ if [ -d out ]; then
rm -rf out
fi
mkdir out && cd out
mkdir out
cd out || exit
if [ -f "Makefile" ]; then
make clean

View File

@ -58,13 +58,13 @@ fi
function compile_app()
{
cd ../ascend310_infer
cd ../ascend310_infer || exit
bash build.sh &> build.log
}
function infer()
{
cd -
cd - || exit
if [ -d result_Files ]; then
rm -rf ./result_Files
fi

View File

@ -19,5 +19,5 @@ rm -rf ./train_single
mkdir ./train_single
cp -r ./src ./train_single
cp ./train.py ./train_single
cd ./train_single
cd ./train_single || exit
python ./train.py --device_id=$DEVICE_ID > ./train.log 2>&1 &

View File

@ -21,7 +21,6 @@ import numpy as np
from src.data_loader import create_dataset, create_cell_nuclei_dataset
from src.config import cfg_unet
class dice_coeff():
def __init__(self):
self.clear()

View File

@ -79,7 +79,7 @@ function compile_app()
function infer()
{
cd -
cd - || exit
if [ -d result_Files ]; then
rm -rf ./result_Files
fi

View File

@ -75,7 +75,7 @@ mkdir ./eval
cp ../*.py ./eval
cp *.sh ./eval
cp -r ../src ./eval
cd ./eval
cd ./eval || exit
echo "start eval for checkpoint file: ${CHECKPOINT_FILE_PATH}"
python eval.py --data_url=$IMAGE_PATH --seg_url=$SEG_PATH --ckpt_path=$CHECKPOINT_FILE_PATH > eval.log 2>&1 &
echo "end eval for checkpoint file: ${CHECKPOINT_FILE_PATH}"

View File

@ -16,11 +16,11 @@
dataset processing.
"""
import os
from PIL import Image, ImageFile
from mindspore.common import dtype as mstype
import mindspore.dataset as de
import mindspore.dataset.transforms.c_transforms as C
import mindspore.dataset.vision.c_transforms as vision
from PIL import Image, ImageFile
from src.utils.sampler import DistributedSampler
ImageFile.LOAD_TRUNCATED_IMAGES = True

View File

@ -16,11 +16,11 @@
import os
import math as m
import numpy as np
from PIL import Image
import mindspore.common.dtype as mstype
import mindspore.dataset as ds
import mindspore.dataset.transforms.c_transforms as c
import mindspore.dataset.vision.c_transforms as vc
from PIL import Image
from src.config import config as cf

View File

@ -69,7 +69,7 @@ function compile_app()
function infer()
{
cd -
cd - || exit
if [ -d result_Files ]; then
rm -rf ./result_Files
fi

View File

@ -53,7 +53,7 @@ for((i=0;i<=7;i++));
do
rm -rf ${current_exec_path}/device$i
mkdir ${current_exec_path}/device$i
cd ${current_exec_path}/device$i
cd ${current_exec_path}/device$i || exit
cp ../../*.py ./
cp -r ../../src ./
cp -r ../*.sh ./
@ -61,6 +61,6 @@ do
export DEVICE_ID=$i
echo "start training for rank $i, device $DEVICE_ID"
python ../../train.py --data_path $DATASET --data_name $DATANAME > log_fasttext.log 2>&1 &
cd ${current_exec_path}
cd ${current_exec_path} || exit
done
cd ${current_exec_path}
cd ${current_exec_path} || exit

View File

@ -14,11 +14,12 @@
# ============================================================================
"""Data operations, will be used in train.py."""
import numpy as np
import mindspore.common.dtype as mstype
import mindspore.dataset as de
import mindspore.dataset.transforms.c_transforms as deC
from src.config import config
import numpy as np
de.config.set_seed(1)
def random_teacher_force(source_ids, target_ids, target_mask):

View File

@ -26,7 +26,7 @@ CKPT_FILE=$3
rm -rf eval
mkdir -p eval
cd eval
cd eval || exit
mkdir -p ms_log
CUR_DIR=`pwd`
export GLOG_log_dir=${CUR_DIR}/ms_log

View File

@ -25,7 +25,7 @@ ACLIMDB_DIR=$2
GLOVE_DIR=$3
mkdir -p train
cd train
cd train || exit
mkdir -p ms_log
CUR_DIR=`pwd`
export GLOG_log_dir=${CUR_DIR}/ms_log

View File

@ -17,7 +17,7 @@
if [ ! -d out ]; then
mkdir out
fi
cd out
cd out || exit
export CXXFLAGS=-D_GLIBCXX_USE_CXX11_ABI=0
cmake .. -DCMAKE_CXX_COMPILER=g++ -DCMAKE_SKIP_RPATH=TRUE
make

View File

@ -78,7 +78,7 @@ function air_to_om()
function compile_app()
{
cd ../ascend310_infer
cd ../ascend310_infer || exit
if [ -f "Makefile" ]; then
make clean
fi
@ -88,7 +88,7 @@ function compile_app()
echo "compile app code failed"
exit 1
fi
cd -
cd - || exit
}
function infer()

View File

@ -17,9 +17,9 @@
Defined callback for DeepSpeech.
"""
import time
import numpy as np
from mindspore.train.callback import Callback
from mindspore import Tensor
import numpy as np
class TimeMonitor(Callback):

View File

@ -17,10 +17,10 @@ import os
from os.path import join
import argparse
import glob
from hparams import hparams, hparams_debug_string
import audio
import numpy as np
from scipy.io import wavfile
from hparams import hparams, hparams_debug_string
import audio
from tqdm import tqdm
from mindspore import context, Tensor
from mindspore.train.serialization import load_checkpoint, load_param_into_net

View File

@ -17,12 +17,12 @@ import json
from os.path import join
import argparse
from warnings import warn
import numpy as np
from hparams import hparams, hparams_debug_string
from mindspore import context, Tensor
from mindspore.train.serialization import load_checkpoint, load_param_into_net, export
from wavenet_vocoder import WaveNet
from wavenet_vocoder.util import is_mulaw_quantize, is_scalar_input
import numpy as np
from src.loss import PredictNet
parser = argparse.ArgumentParser(description='TTS training')

View File

@ -15,9 +15,9 @@
Defined callback for DeepFM.
"""
import time
import numpy as np
from mindspore.train.callback import Callback
from mindspore import Tensor
import numpy as np
class TimeMonitor(Callback):

View File

@ -15,11 +15,11 @@
"""Extended Conv1D."""
import math
import numpy as np
from mindspore import nn, Tensor
from mindspore.ops import operations as P
import mindspore.common.dtype as mstype
from mindspore import context
import numpy as np
class Conv1d(nn.Conv1d):
"""

View File

@ -69,7 +69,7 @@ for((i=0;i<=$RANK_SIZE-1;i++));
do
echo 'start rank '$i
mkdir ${current_exec_path}/device$i
cd ${current_exec_path}/device$i
cd ${current_exec_path}/device$i || exit
export RANK_ID=$i
dev=`expr $i + 0`
export DEVICE_ID=$dev

View File

@ -61,7 +61,7 @@ export RANK_ID=0
rm -rf ${current_exec_path}/device$USE_DEVICE_ID
echo 'start device '$USE_DEVICE_ID
mkdir ${current_exec_path}/device$USE_DEVICE_ID
cd ${current_exec_path}/device$USE_DEVICE_ID
cd ${current_exec_path}/device$USE_DEVICE_ID || exit
dev=`expr $USE_DEVICE_ID + 0`
export DEVICE_ID=$dev
python ${dirname_path}/${SCRIPT_NAME} \

View File

@ -61,7 +61,7 @@ export RANK_ID=0
rm -rf ${current_exec_path}/device$USE_DEVICE_ID
echo 'start device '$USE_DEVICE_ID
mkdir ${current_exec_path}/device$USE_DEVICE_ID
cd ${current_exec_path}/device$USE_DEVICE_ID
cd ${current_exec_path}/device$USE_DEVICE_ID || exit
dev=`expr $USE_DEVICE_ID + 0`
export DEVICE_ID=$dev
python ${dirname_path}/${SCRIPT_NAME} \

View File

@ -66,7 +66,7 @@ export RANK_ID=0
rm -rf ${current_exec_path}/device$USE_DEVICE_ID
echo 'start device '$USE_DEVICE_ID
mkdir ${current_exec_path}/device$USE_DEVICE_ID
cd ${current_exec_path}/device$USE_DEVICE_ID
cd ${current_exec_path}/device$USE_DEVICE_ID || exit
dev=`expr $USE_DEVICE_ID + 0`
export DEVICE_ID=$dev
python ${dirname_path}/${SCRIPT_NAME} \

View File

@ -17,8 +17,8 @@ import os
import warnings
import argparse
import numpy as np
from tqdm import tqdm
import cv2
from tqdm import tqdm
import mindspore.nn as nn
from mindspore import Tensor

View File

@ -75,7 +75,7 @@ for((i=0;i<=$RANK_SIZE-1;i++));
do
echo 'start rank '$i
mkdir ${current_exec_path}/device$i
cd ${current_exec_path}/device$i
cd ${current_exec_path}/device$i || exit
export RANK_ID=$i
dev=`expr $i + 0`
export DEVICE_ID=$dev

View File

@ -61,7 +61,7 @@ export RANK_ID=0
rm -rf ${current_exec_path}/device$USE_DEVICE_ID
echo 'start device '$USE_DEVICE_ID
mkdir ${current_exec_path}/device$USE_DEVICE_ID
cd ${current_exec_path}/device$USE_DEVICE_ID
cd ${current_exec_path}/device$USE_DEVICE_ID || exit
dev=`expr $USE_DEVICE_ID + 0`
export DEVICE_ID=$dev
python ${dirname_path}/${SCRIPT_NAME} \

View File

@ -72,7 +72,7 @@ export RANK_ID=0
rm -rf ${current_exec_path}/device$USE_DEVICE_ID
echo 'start device '$USE_DEVICE_ID
mkdir ${current_exec_path}/device$USE_DEVICE_ID
cd ${current_exec_path}/device$USE_DEVICE_ID
cd ${current_exec_path}/device$USE_DEVICE_ID || exit
dev=`expr $USE_DEVICE_ID + 0`
export DEVICE_ID=$dev
python ${dirname_path}/${SCRIPT_NAME} \

View File

@ -102,7 +102,7 @@ def main(args):
else:
param_dict_new[key] = values
load_param_into_net(network, param_dict_new)
cfg.logger.info('load model {} success'.format(cfg.pretrained))
cfg.logger.info('load model %s success' % str(cfg.pretrained))
# optimizer and lr scheduler
lr = warmup_step(cfg, gamma=0.9)

View File

@ -328,6 +328,6 @@ if __name__ == '__main__':
log_path = os.path.join(arg.ckpt_path, 'logs')
arg.logger = get_logger(log_path, arg.local_rank)
arg.logger.info('Config\n\n%s\n' % pformat(arg))
arg.logger.info('Config\n\n%s\n' % str(pformat(arg)))
main(arg)

View File

@ -42,7 +42,7 @@ export RANK_SIZE=8
export RANK_TABLE_FILE=$PATH1
EXECUTE_PATH=$(pwd)
echo *******************EXECUTE_PATH= $EXECUTE_PATH
echo *******************EXECUTE_PATH=$EXECUTE_PATH
if [ -d "${EXECUTE_PATH}/log_parallel_graph" ]; then
echo "[INFO] Delete old data_parallel log files"
rm -rf ${EXECUTE_PATH}/log_parallel_graph
@ -53,7 +53,7 @@ for((i=0;i<=7;i++));
do
rm -rf ${EXECUTE_PATH}/data_parallel_log_$i
mkdir -p ${EXECUTE_PATH}/data_parallel_log_$i
cd ${EXECUTE_PATH}/data_parallel_log_$i
cd ${EXECUTE_PATH}/data_parallel_log_$i || exit
export RANK_ID=$i
export DEVICE_ID=$i
echo "start training for rank $RANK_ID, device $DEVICE_ID"

View File

@ -42,7 +42,7 @@ export RANK_SIZE=8
export RANK_TABLE_FILE=$PATH1
EXECUTE_PATH=$(pwd)
echo *******************EXECUTE_PATH= $EXECUTE_PATH
echo *******************EXECUTE_PATH=$EXECUTE_PATH
if [ -d "${EXECUTE_PATH}/log_parallel_graph" ]; then
echo "[INFO] Delete old data_parallel log files"
rm -rf ${EXECUTE_PATH}/log_parallel_graph
@ -53,7 +53,7 @@ for((i=0;i<=7;i++));
do
rm -rf ${EXECUTE_PATH}/data_parallel_log_$i
mkdir -p ${EXECUTE_PATH}/data_parallel_log_$i
cd ${EXECUTE_PATH}/data_parallel_log_$i
cd ${EXECUTE_PATH}/data_parallel_log_$i || exit
export RANK_ID=$i
export DEVICE_ID=$i
echo "start training for rank $RANK_ID, device $DEVICE_ID"

View File

@ -39,7 +39,7 @@ if [ -d "${EXECUTE_PATH}/log_inference" ]; then
fi
mkdir ${EXECUTE_PATH}/log_inference
cd ${EXECUTE_PATH}/log_inference
cd ${EXECUTE_PATH}/log_inference || exit
env > ${EXECUTE_PATH}/log_inference/face_recognition.log
python ${EXECUTE_PATH}/../eval.py &> ${EXECUTE_PATH}/log_inference/face_recognition.log &

View File

@ -61,7 +61,7 @@ export RANK_ID=0
rm -rf ${current_exec_path}/device$USE_DEVICE_ID
echo 'start device '$USE_DEVICE_ID
mkdir ${current_exec_path}/device$USE_DEVICE_ID
cd ${current_exec_path}/device$USE_DEVICE_ID
cd ${current_exec_path}/device$USE_DEVICE_ID || exit
dev=`expr $USE_DEVICE_ID + 0`
export DEVICE_ID=$dev
python ${dirname_path}/${SCRIPT_NAME} \

View File

@ -75,7 +75,7 @@ for((i=0;i<=$RANK_SIZE-1;i++));
do
echo 'start rank '$i
mkdir ${current_exec_path}/device$i
cd ${current_exec_path}/device$i
cd ${current_exec_path}/device$i || exit
export RANK_ID=$i
dev=`expr $i + 0`
export DEVICE_ID=$dev

View File

@ -61,7 +61,7 @@ export RANK_ID=0
rm -rf ${current_exec_path}/device$USE_DEVICE_ID
echo 'start device '$USE_DEVICE_ID
mkdir ${current_exec_path}/device$USE_DEVICE_ID
cd ${current_exec_path}/device$USE_DEVICE_ID
cd ${current_exec_path}/device$USE_DEVICE_ID || exit
dev=`expr $USE_DEVICE_ID + 0`
export DEVICE_ID=$dev
python ${dirname_path}/${SCRIPT_NAME} \

View File

@ -61,7 +61,7 @@ export RANK_ID=0
rm -rf ${current_exec_path}/device$USE_DEVICE_ID
echo 'start device '$USE_DEVICE_ID
mkdir ${current_exec_path}/device$USE_DEVICE_ID
cd ${current_exec_path}/device$USE_DEVICE_ID
cd ${current_exec_path}/device$USE_DEVICE_ID || exit
dev=`expr $USE_DEVICE_ID + 0`
export DEVICE_ID=$dev
python ${dirname_path}/${SCRIPT_NAME} \

View File

@ -72,7 +72,7 @@ export RANK_ID=0
rm -rf ${current_exec_path}/device$USE_DEVICE_ID
echo 'start device '$USE_DEVICE_ID
mkdir ${current_exec_path}/device$USE_DEVICE_ID
cd ${current_exec_path}/device$USE_DEVICE_ID
cd ${current_exec_path}/device$USE_DEVICE_ID || exit
dev=`expr $USE_DEVICE_ID + 0`
export DEVICE_ID=$dev
python ${dirname_path}/${SCRIPT_NAME} \

View File

@ -17,11 +17,9 @@ import os
import glob
import random
import pickle
from src.data import common
import numpy as np
import imageio
from src.data import common
def search(root, target="JPEG"):

View File

@ -34,7 +34,7 @@ def calc_psnr(sr, hr, scale, rgb_range, y_only=False, dataset=None):
gray_coeffs = np.array([65.738, 129.057, 25.064]
).reshape((1, 3, 1, 1)) / 256
diff = np.multiply(diff, gray_coeffs).sum(1)
if hr.size == 1:
if np.size(hr) == 1:
return 0
if scale != 1:
shave = scale

View File

@ -37,10 +37,10 @@ then
else
echo "NMS module was not found, install it now..."
git clone https://github.com/xingyizhou/CenterNet.git
cd CenterNet/src/lib/external/
cd CenterNet/src/lib/external/ || exit
make
python setup.py install
cd -
cd - || exit
rm -rf CenterNet
fi

View File

@ -36,10 +36,10 @@ then
else
echo "NMS module was not found, install it now..."
git clone https://github.com/xingyizhou/CenterNet.git
cd CenterNet/src/lib/external/
cd CenterNet/src/lib/external/ || exit
make
python setup.py install
cd -
cd - || exit
rm -rf CenterNet
fi

View File

@ -13,9 +13,9 @@
# limitations under the License.
# ============================================================================
"""hub config."""
from src.resnet_imgnet import resnet50
from mindspore import Tensor
import numpy as np
from mindspore import Tensor
from src.resnet_imgnet import resnet50
def get_index(filename):

View File

@ -15,7 +15,7 @@
# ============================================================================
mkdir -p ms_log
PROJECT_DIR=$(cd "$(dirname "$0")"; pwd)
PROJECT_DIR=$(cd "$(dirname "$0")" || exit; pwd)
CUR_DIR=`pwd`
export GLOG_log_dir=${CUR_DIR}/ms_log
export GLOG_logtostderr=0

View File

@ -15,8 +15,8 @@
"""config script"""
import mindspore.common.dtype as mstype
from easydict import EasyDict as edict
import mindspore.common.dtype as mstype
from .tinybert_model import BertConfig
from .assessment_method import Accuracy, F1, Pearsonr, Matthews

View File

@ -15,8 +15,8 @@
"""dataset api"""
import os
from itertools import chain
import gensim
import numpy as np
import gensim
from mindspore.mindrecord import FileWriter
import mindspore.dataset as ds

View File

@ -18,8 +18,8 @@ from collections import defaultdict
import random
from time import time
import json
from tqdm import tqdm
import numpy as np
from tqdm import tqdm
from transformers import AlbertTokenizer

View File

@ -26,9 +26,9 @@ import gzip
import string
import pickle
import sqlite3
import numpy as np
from tqdm import tqdm
import numpy as np
from transformers import BasicTokenizer

View File

@ -18,8 +18,8 @@ import json
import random
from collections import defaultdict
from time import time
from tqdm import tqdm
import numpy as np
from tqdm import tqdm
from mindspore import Tensor, ops
from mindspore import dtype as mstype