forked from mindspore-Ecosystem/mindspore
add parallel op for square
This commit is contained in:
parent
08985a1e56
commit
36ffb66782
|
@ -128,6 +128,7 @@ REGISTER(BatchMatMulInfo);
|
|||
REGISTER(ExpandDimsInfo);
|
||||
REGISTER(SqueezeInfo);
|
||||
REGISTER(SigmoidCrossEntropyWithLogitsInfo);
|
||||
REGISTER(SquareInfo);
|
||||
} // namespace parallel
|
||||
} // namespace mindspore
|
||||
|
||||
|
|
|
@ -203,6 +203,14 @@ class SqueezeInfo : public ActivationOther {
|
|||
private:
|
||||
ValueTuplePtr axis_;
|
||||
};
|
||||
|
||||
class SquareInfo : public ActivationOther {
|
||||
public:
|
||||
SquareInfo(const std::string& name, const Shapes& inputs_shape, const Shapes& outputs_shape,
|
||||
const PrimitiveAttrs& attrs)
|
||||
: ActivationOther(name, inputs_shape, outputs_shape, attrs) {}
|
||||
~SquareInfo() override = default;
|
||||
};
|
||||
} // namespace parallel
|
||||
} // namespace mindspore
|
||||
#endif // MINDSPORE_CCSRC_PARALLEL_OPS_INFO_ACTIVATION_INFO_H_
|
||||
|
|
|
@ -202,9 +202,10 @@ constexpr char SQRT[] = "Sqrt";
|
|||
constexpr char ASSIGN[] = "Assign";
|
||||
constexpr char GET_NEXT[] = "GetNext";
|
||||
constexpr char SQUEEZE[] = "Squeeze";
|
||||
constexpr char Neg[] = "Neg";
|
||||
constexpr char NEG[] = "Neg";
|
||||
constexpr char BATCH_MATMUL[] = "BatchMatMul";
|
||||
constexpr char EXPAND_DIMS[] = "ExpandDims";
|
||||
constexpr char SQUARE[] = "Square";
|
||||
|
||||
// Parallel don't care
|
||||
constexpr char TUPLE_GETITEM[] = "tuple_getitem";
|
||||
|
|
|
@ -104,13 +104,14 @@ std::vector<std::string> splittable_op_ = {MATMUL,
|
|||
SQRT,
|
||||
GET_NEXT,
|
||||
CAST,
|
||||
Neg,
|
||||
NEG,
|
||||
SQUARE,
|
||||
BATCH_MATMUL,
|
||||
EXPAND_DIMS,
|
||||
SQUEEZE};
|
||||
|
||||
std::vector<std::string> elementwise_op_ = {ACTIVATION, GELU, TANH, SOFTMAX, LOG_SOFTMAX, RELU, SQRT,
|
||||
CAST, POW, EXP, LOG, COS, ACOS, LOGICALNOT};
|
||||
std::vector<std::string> elementwise_op_ = {ACTIVATION, GELU, TANH, SOFTMAX, LOG_SOFTMAX, RELU, SQRT, CAST,
|
||||
POW, EXP, LOG, COS, ACOS, LOGICALNOT, NEG, SQUARE};
|
||||
|
||||
bool StepAutoParallel(const FuncGraphPtr &root, const opt::OptimizerPtr &) {
|
||||
MS_EXCEPTION_IF_NULL(root);
|
||||
|
|
|
@ -0,0 +1,85 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import numpy as np
|
||||
import mindspore as ms
|
||||
from mindspore import context, Tensor, Parameter
|
||||
from mindspore.nn import Cell, TrainOneStepCell, Momentum
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.common.api import _executor
|
||||
|
||||
|
||||
class Net(Cell):
|
||||
def __init__(self, mul_weight, strategy1=None, strategy2=None):
|
||||
super(Net, self).__init__()
|
||||
self.mul = P.Mul().set_strategy(strategy1)
|
||||
self.square = P.Square().set_strategy(strategy2)
|
||||
self.mul2 = P.Mul().set_strategy(strategy1)
|
||||
self.mul_weight = Parameter(mul_weight, "w1")
|
||||
|
||||
def construct(self, x, b):
|
||||
out = self.mul(x, self.mul_weight)
|
||||
out = self.square(out)
|
||||
out = self.mul2(out, b)
|
||||
return out
|
||||
|
||||
|
||||
_x = Tensor(np.ones([128, 64, 32]), dtype=ms.float32)
|
||||
_w1 = Tensor(np.ones([128, 64, 32]), dtype=ms.float32)
|
||||
_b = Tensor(np.ones([128, 64, 32]), dtype=ms.float32)
|
||||
|
||||
|
||||
def compile_net(net):
|
||||
optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
||||
train_net = TrainOneStepCell(net, optimizer)
|
||||
_executor.compile(train_net, _x, _b)
|
||||
context.reset_auto_parallel_context()
|
||||
|
||||
|
||||
def test_square_data_parallel():
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
|
||||
strategy1 = ((16, 1, 1), (16, 1, 1))
|
||||
strategy2 = ((16, 1, 1), )
|
||||
net = Net(_w1, strategy1, strategy2)
|
||||
compile_net(net)
|
||||
|
||||
|
||||
def test_square_model_parallel():
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
|
||||
strategy1 = ((1, 1, 16), (1, 1, 16))
|
||||
strategy2 = ((1, 1, 16), )
|
||||
net = Net(_w1, strategy1, strategy2)
|
||||
compile_net(net)
|
||||
|
||||
|
||||
def test_square_hybrid_parallel():
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
|
||||
strategy1 = ((2, 2, 4), (2, 2, 4))
|
||||
strategy2 = ((2, 2, 4), )
|
||||
net = Net(_w1, strategy1, strategy2)
|
||||
compile_net(net)
|
||||
|
||||
|
||||
def test_square_auto_parallel():
|
||||
context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=16, global_rank=0)
|
||||
net = Net(_w1)
|
||||
compile_net(net)
|
||||
|
||||
|
||||
def test_square_repeat_calc():
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
|
||||
strategy1 = ((2, 2, 4), (2, 2, 4))
|
||||
strategy2 = ((1, 2, 2), )
|
||||
net = Net(_w1, strategy1, strategy2)
|
||||
compile_net(net)
|
Loading…
Reference in New Issue